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Chapter 6
PROBABILITY

6.1 Introduction

Probability theory is a field of mathematics that

can be said to have been born in the year 1654 when the French
mathematicians Blalse Pascal and Pierre de Fermat started to
correspond on some problems related to games of chance. Since
then many mathematicians have contributed to the development of
probability theory; for instance, Christian Huygens, Jacob
Bernoulli, Abraham de Moivre and Pierre Simon De Laplace.
(Consult an encyclopedia to find out more about these men and
thoir contributions to probability theory.) |

o It is interesting to note that probability theory did
not get a well-organized mathematical foundation until 1933

_when the Russian mathematician A, N Kblmogorov published a

famous book on probability in which he showed that probability

- theory could be based on set theory._ Currently there 1is great
"interest in this field since probability is .of fundamental

,importance in such areas as statistics, physical science,

technology, social science, administration, predicting election

':V‘results, life insurance, genetics, and in fact vherever analysis

'_of data is used.:lﬁ

we have already had some contact with probability theory.‘

\) W

In this chapter we\shall?buildfupon this, and extend this




theory. In later courses we shall frequently return to

continue our study of probability.

6.2 Outcome Set and Events

In Section 6.1 it was stated that Kolmogorov showed
that probability may be based on set theory., We will use
ideas and notation from set theory in describing situations
where we can record and analyze the result of some action or
observation, For example,we might observe a basketball player
taking'shots from the foul-line. ‘This activity may be called
an'exper iment with}{basxet, no basket} as the outcome set,

Each shot is celled e trial and eech member of the outcome set
is celled an outcome. In this experiment basxet and no basket

are outcomes. Some texts use sample ;pece and ple point

insteed of outcome set and outcome.

_ In this chapter we will considez only experiments with
7e finite number of outcomes,_but subsequent study of probdbility'
'_:requires the idea of infinite outcome sets.t We uill use the
symbol. s to represent an outcome set. pV} o R

. RlDefinition 1._ If a,, a., voo ; a ere cutcomes of an

n
experiment, then o

s = [a‘, a"..... ’ a. } o
is called en outcome set of the experiment'

. fThere mqy be more than one suitdble outcome set “for an i

experiment.p';w‘__.\-

Following are som examples:of experiments and suiteble is.-~ﬂ




outcome sets that contain two outcomes. In Example 3 you

must discover how many outcomes there are,

Example 1, Tossing a coin; S = {Heads, Pails)
Figure 6,1
Example 2, Tossing a thumbtack; S = {Up, Down]}.

5

Figure 6.2

- Exemple 3., A peripatetic bug takes walks on the edges of a
bug_  cube as follows-~*“'
"R E —,H

(a) He always starts at A and flies
,‘ Aback to A after each walk |
() Each walk is exactly 3 edges long.

vf,(c)’,He sometimes traverses the same |

, _ ,  ;1edge 2 or 3 times 1n the same walk,

. Fisure63 ; o |

. Qngstigng (1) List each possible trip by writing the vertices,
e e "~:[ reached enroute, .g. EAF, FEH, BGH, etc. L




(2) which vertices are possible destinations for
a trip? (E g. H is the destination of BCH.)
(3) Let each trip be a trial and each destination
an outcome, At each vertex, except the last,
there are three choices for continuing the
trip, each of the 3 edges meeting there.
Which outcomes do you think are most likely?
Why?
Following are two examples of outcome sets with more than
two outcomes and representations of these outcome sets as

sets of points, In Example 6 you will perform an experiment,

Example 4, Tossing a die; s = (1,2,3,4,5,6).
bt °
o o
0 |

I* 2 3’»- ¢
o e,  Figure 6.4 | G -
Exqmpie 5;vfngce191né'a'1etter grade; S = (F, D, C, B, A

ﬁ— F | ' ].5 | f

Figure 6 5

‘:1, Ble 6 Ma,tching Cards. o




(b) Each player shuffles his deck, turns his
deck back-up, turns the top card over and
places it face-up on the table.

(¢) If the cards match (see Figure 6.6) make a
tally. Continue through the deck, card for

card. 13—0— T

Vel Al
T' Match “.

Y v
No Match
Figure 6.6

(d) After comparing the two decks, card for
| card, record the number of matches,
 (e) ‘Let each performance of steps b, ¢ and d in
| sequence be & trial, Let the number of
'matches for each tria.l be an outcome. Repeat
the trials until five have been performed.

Number of Tallies = Number of
_Matches ; ‘ Tallles

o

b | b

Q,ugsj_j._qg_ (1) Record your results for, each experiment in a
T table like Tdble 6 1.




(2) Repeat the whole experiment using just the
two sets of 13 hearts, Repeat with the first
spades; also the first 3 clubs (i.e. A, 2, 3).

(3) Did the number of cards seem to influence the
results? | '
The next two examples have outcome sets which are
Cartesian products. The Cartesian product, A x B, of A and
B is the set oi’ all ordered pairs (as b) where a €A and
b€ B, o _
o A xB={(a, b): a €Aandb € B},
Exemple 7,"Tbssing a dime and a cent; S = ((H,H),(K1),(T,H),(T,T)),
' or equivalently {H,T] X [H T]
(cent)‘ .

Q;This point is (T,H) for
,the: outcome dime tail,
cent head,




(green die) 6 T . . . . . .

5 .
u T [ [ L[] [ )
This point is
3 . e . . / 5’3 fO!' red
die 5, green
. . die 3,

\
g
L]
L3
L3
L3

i~
"

1 2 3 ) 5 6 (red die)
Figure 6.8 -

Red die Green die Outcome Sums
RED . GREEN
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Instead of the outcome set of Example 8, we could
consider the outcome set to be the set of sums of the numbers
of dots on the upper faces of the dice. E.G. (5,3) in Example
8 would correspond to the sum 8 in the new outcome set.

In this case a suitable outcome set would be:

=12, 3 4 5,6, 7, 8, 9, 10, 11, 12,)
Notice, however, that the outcome set first used in Example 8
glves more detailed 1nformation. ‘ -
Question. If each ordered pair in the first outcome set of
Exemple 8 (i.e. (1,2,3,4,5,6} x (1,2,3,4,5,6)
is equany likely, which sum do ydu' .think will be
 most likely in the second outcome set (1 e, the

.set of sums)?

"5'Exgg21e 9 Tossing 3 coins.“."‘ R |
R First coin Second coin l:Third;coin _:-gutcomés:--*




It is also possible to graph the outcome set of Example
8 in 3 dimensions as shown in Figure 6.11.
HHT /p_

HTT
}
|
|
I
THT, E
[}
[}
|
|
[}
o
I
. 'HHH HTH
it I e
Vd . ’
7/
4
7
N )
THH TTH

| _ Figure 6 11 o .
"71Act1vitx Join the points representing the outcomes in’ the :
) event “exectly 2 heads" by 11ne segements.~ '
In Examples 1 to 9 you hsve seen descriptions of types
_“of experiments and suiteble outcome sets. Certein subsets of .

‘,fﬁoutcome sets are of 1nterest 1n probdbility theory. In‘Exemple

;1le8 one such’subset 1s the;set,;,;; 'f'*"""
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Question. Is S a subset of S? Is ¢ a subset of S?
Are S and ¢ events?
The power set of S, where S = {H,T}, is:
é(s) = (4, (1), (T), (H,T))
Question. List the events in the power set of S where
| s = {0, 1, 2].
(Hint: There should be 28 or 8 events in #(S).)
Defiriition” 3. As M ie an event tha.t contains
o o exactly 1 outcome.. . |
-.;guestiqn. How ma.ny singletons are there in o(s) where
. s=(gm:

'I'he next two exa.mples show how you can use the graph of

: to':; graph a.n event. 'l‘he graph of. an’ event is a
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Subset A is the event that the outcome of the first spin is
greater than 1, A = {((x,y): x > 1} =
((2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),
(4,3),(4,4)} Subset B is the event that the sum of the
outcomes on the first and second spin is less than 5.
= {(x,y) x4y < 5} = {(1,1),(1,2),(1,3),(2,1),(2,2),(3,1))
Question. Wnich points in Figure 6.12 gre in both events A
end B? (E.g. point (3,1) 1s in both A and B.)
Which points are in either A or B (or both)?
. You have previoule encountered ldeas about sets that are
_ useful in probability. The remainder of this section will be

| 'devoted to relating .hese idesas to events.

Definition h A U B (read "A union B") is: the event that_
i '?l contains those and only those outcomes that

be1ong to A or B (or both)

= (x: x"_eyA or x € B}
"lled he union event of A and B.
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In Example 10 the graph of A U B is shown as a subset of
the greph of the outcome set, S = (1,2,3,4) x (1,2,3,4}, The
~graph of A U B includes 15 dots, 12 in event A and 6 in event B,

Questidn.- What happened to the other 3 dots?
Example 11, Let S be an outcome set of the experiment of
| tossing two dice andv ’observiné the total
number of dots obtained,
8= '[2.3,,h,5;6,-7.8.19,10,11,12]
Let C and D be the events:
.Co= '{2‘ 3;4}; D = (4,5,6],

'I'hen cuyDs= (2, 3,u] v (4,5,6) = (2, 3.# 556

,which is the union event of o and D,

'I'he graph of C U-D ca.n be shovm a.s in Figure 6 1h
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 Figure 6,15 illustrates the intersection event of A and B

with Venn dlagrams:
’ A N B shaded

S

@ m

). Let x be the -

&nd F be events
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Definition 6, K (read "the complement of A") is the event that
contains those and only those outcomes that are
in S and not in A; 1.e,,
E=(x:x€¢gandx#Al.
K is called the complementary event of A.

X occurs whenever A does not occur,

Figure 6.17 illustrates the éomplemehtary evént_ of A with

& Venn diagram:




-;5-

Definition 7. ANB (read "A minus B") is the set of all

outcomes in S which are in A and not in B; i.e.,
AN\B = (x:x €A and x € B). |
A\B is called the difference event of A and B.

A \B occurs whenever A occurs and B does not occur.

. 'Figure 6,19 illustrates the difference event 6va and B

with a Venn diegrem:

1 which included the suns

prer faces of the dice, let H
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Definition 8. Two events C and D, for which C N D = @,

are called disjoint events.

The diagrams in Figure 6.20 show two ways of portraying two
' disJoint events.

R _ - Figure 6 20 | -
The notion of disdoint events can be extended to three o

[or more events.1,V\;n

‘Definition 8a. Three eventsABandc ;ré'_‘qié;jbmf; if
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Definition 8b, In general, n events A,, Ag, ...s An
are disjoint if and only if they are
pairwise disjoint.

Figure 6,22 illustrates the event E, that exactly one

of the events A, B and Cloécurs:

ANENE

ANBAC




- 18 =

F is the event that exactly two of the events A, B and
C ocecur, |
Questions, (a) Event E in“Figﬁre 6'22 1s expressed‘as the
. " union of 3 events. 'Are these 3 events disJoint¢
'(bi Change event F in Figure 6.23 by interchanging |
"_the role of intersection and union. Draw a

Venn diagram to illustrate this new event

6,3 Exercises

1 1.‘ Give roster names and . graph of suitdble outcome sets for X

71_-eaoh o‘_the following experiments end draw tree diagrams
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2, Describe a practicel experiment for which the following
are suitable outcome sets,

(a) S = {(urn I, red bead), (urn I, blue bead), (urn I,

 white bea@}} (urn II, black bead), (urn II, yellow

'beed)]‘
- vanille ""”’~Careme1
| ,/’/ T~ Walnuts .
\ __—Fudge -
chocolate Caramel
: oo —~Walnuts

_(c) S = [w < 100, 100 <w< 120, w > 120)
. (4) S = {HHH, HHT, HTH, THH, T'I'H, THT, HIT, or7) |
I(e) ‘S [ae, ai, 20, au, ea, el, eo, eu, ia, ie, 1o, iu,

Oa: Oe: Oi: Ou, ua, ue, ui, uo]

e 3 From 8 bridge deck;select the cerds of each suit showing

"fftglnuMbers 2, 3:or‘h5' Drey*one cerd fram the 12 selected cerds.
"-f-ffA suitdble outcomee_,_ 1e i '“' :},.f.- R AR
s = [112 33’5 Hh,_na n3, Du s2 s3, su c2 c3, cul




(e) The complementary event of A.
(£) The difference event of A and B, _
(&) Which three of the above 6.events A, B, A U B, A N B,
- K and ANB ere disjoint?
(h) Represent the outcome set and events A and B as sets
| - of points in a plane with the suits assigned points
on & horizontal exis and the numbers assigned points

on a verticel axis.

Consicer the experiment where two tetrahedra, one blue and

- one yellow, are tossed Each tetrehedron (a three dimensional

,figure consisting of four trianguler faces) has the nuinerals

v‘"ul, 2, 3, 4 on its faces. H;" o
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(d) Draw a graph of the outcome set.
(¢) On the graph in part (), encircle event C of part (b).
| (£) On the same graph encircle e_veht D of part (ec).
5. Use set notation involving'union; Hinte'r'secii:ion. and
complement to describe the events sha.ded in the following
_Venn diegrams. ' '

‘_(e) |




7. Compare the Venn diegrams for parts (c) and (d) of
, Exercise 6 What do you notice dbout the two diegrams’
'Can you formulate en explanation regarding the relationship
_between these two events? _;;_,
8._'Repeat Exercise 7 for parts (e) and (f) of Exercise 6
f’ Repeat Exercise 7 for parts (a) and (g) of Exercise 6,
9. Let the outcome set S be given by S = [a, b, c] Suppose
”that a trial results in the outcome a. Under these

,_conditions, which events of O(S) have occurred?

o "6.1;‘» 'pn‘,bgb‘ifmx* "‘n'ea'sare

‘“_V:A‘Inuthisvsection we. shall_' rmulate the notion of -
"fprObebility more precisely Before oing:this we should
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All of the experiments we performed seem to
have certain things in common,
Use the. table'invFigure'6.24 to verify the
‘following statements._[
1, Each of the relative. frequencies is a
v real number between 0 and 1 inclusive,
_:2;' The sum of the: relative frequencies of
‘nthe outcomes in's is 1,
*f~:3;Y‘The relative frequency of the union of
">2 disJoint events is the sum ‘of the
'u;ﬂrelative frequencies of the two events.
”‘if,In‘Example 1 you can’ use [H} Ry {T} =" (H," T}.
' 7there 13 nothing hypothetical about

L”l"?_In these‘experimen 8
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s T

is a function with domein’O(s), and
~codomain R, with the following properties:
(1) o gP(A) < 1 for every A € ¢ (s).
(2) P(S) =1,
. (3) 1Ir A and B are disJoint (1.e.s
AN B --¢), ‘thens
B .__,';P(A U B) = P(A) + B(B).
_ We call P(A) the probabilitx of A, and the ordered pair
(s,P), consisting of the outcome set s and the probability

'imeasure P, a: grobabilitx pece. ,,;,,11
4 Thus e probability measure P 1s a function thet essigns &

°7rf;rea1 number P(A)*tofeveryfevent A 1n such azway that properties
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), (QQ], and {a;) are called
g;gg;gggg'gxgggg, or sometimes
Just = 1ng1etons, since they each

~contain just one outcome, (a,]

 is the event that the arrow stops

' on sector & of the spinner, and

e __‘.fsimilarly for (a2] and {a3]
Fisure_6.25 'jf~**w-_~ f-(See Figure 6 25 )
‘ E The power set of S or 0(8) 1s:
9(8) = w. (g} {aa}. {a3}. {al.ae}. {a1.a3}.
lagag)s fagieing). | 5
.Let t be the real valued function defined on’

the aingleton "evefitg-v ‘f'ﬂ»n(fs)“'t‘__;;‘r‘"]Tebl_;ej.s.a. SR
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| L{al} |[a21 [teg) l[el,a2} I[al.a3} I{aa,a?} |[a1.a2,a3]

P(A)lOI .25 | .30 l 45 I _"_.55 l .70 I .75 I 1.00 "
' | ) Q,uevstion. . Check to see that the assignments ma.do by.
| ;. Pin Example 3 satisfy the three properties
. ..of g probability mea.sure a.s defined in o
-:;:,Def:lnition 9. Just select a few ca.se |
of' property 3 to verify. Do ‘you see -
o ‘gt-:-.i‘now the. function P 15 bullt up from the
T e ,;,--ﬁmction t" ,‘ | | o
We make some .inf rma.l ""ummariz:lng statements a,bout the
' ‘1n Eb:ample 3. o

" ‘ass:l.gnments ma,de by h ruhction
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~ Example 3 by using unions of singietons in
&3), property 3 and an e‘xtension;':of property
3 to more than 2 évents. Notice tﬁat we omit
the braces in the probability statements to
simplify the notation- : :
L. {al,ael (a.ll v [aal e
 Play,sy) = Pay) + B(sy) = es*+._ 30 = .55
2. (al.a3} - [al] u (a.3] i |
)"P(al,a3l = P(al) + P(a3) = 25 +. 45 -
‘r’btaa,aal = (2] U (23]

I
5y
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(n(A) denotes the number of elements in set
' A' ) The proof of Theorem 1 requires
‘mathematical induction. |
" We shall call the probabilities P(ai) for za.1 € S,

: 1ementLry probabilities. , .
Theorem 1 tells us that the probability megsure P 1s

".j‘determined by the elementary proba.bilities. In fact, this is &
| .‘.,common wa.y to give a probability measure for finite outcome sets,
o Z]In Examples 2, 3, a.nd ’4 we sa.w how a probability measure 1is
fgiven in this way. Ul e o
T ,E* ple 5 The experiment of counting the number of
RIS e customers entering a‘certain post office
ur:l.ng n minuteha. the_outcomes and -
probabilitie “‘shovm_inf"rable 6 u
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From Theorem 1 we obtain:

* P(A) = P(0c) + P(lc) + P(2¢c)
= ,05 + .15 <+ ,22
= b2 o

'In a similar way we can get the probability that
- at least 3 customers arrive during one minute:
B | 22 + 36 = .58 .
- Example 6. The experiment of tossing ‘a certain die has the
T ;*elementary probabilities displayed in Table

singletons | (1) ) 6y (4; =) | t6)
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In this problem, the probability that the
number'of,dots_ie more than 2 buf less than
6 is: | i
P(3) + P(u) + B(5) = 5"%-+ z- %-
In cases where ail the elementary probabilities

. are equel, we say that the probability measure

is uniform;' Section 6 6 will be devoted to
, ‘ uniform probabil;*y measures.
In the following theorem we have collected some additional
consequences of our definition of a probability measure.
Theorem 2, Let (s, P) be a probability spa.ce, and let
A A B ep(s) Them:
o 'ﬁLP(A) + P(') -

ollows that
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easily once we Imow I

- 3] ~

Figure 6 .25

(e) From Figure 6 «25, we can see that

A= (ANB) U (& nB),

(A\ B) n(a nB) = 4.

‘l‘hen from property 3 of a probability
mea.sure, ¥ o - S ,‘
P(A) = P(A\B) + P(A n B), or .
P(A\B) P(A) - P(A n B)

o (;i)i If Bc A, then An B B, 'I‘hus |
,}p(a) - P(A n B) = P(A) - p(s) = P(A\B), -
by part (c) oi’ this theorem. 5 But

& ;",v:'._i’P(A\B)z o 'rhus P(A) - P(B) 2 o or




Example 8, In a certain geme Allan tosses darts at a
dart-board, The dart-board contains
rectangular regions as shown in Figure 6,27,
The probability that he will hit region A
is .4, and the probability that he will hit
region B is .3, The probability that he
will hit both regions is ,1, Figure 6,27
1llustrates the various regions of ‘the
dartboard as 1nd1cated by A\B, B\A, A N B

- and JFTT15

i
| - fans |

| —— ) S

 ??€9$ using Fisure 6.27 and our formulas. Thus. J; ;‘

- Figure 0,20 with a Venn diagram, some probabili-'
[}{j:les derived'byﬁthe rormulas oféTheorem 2.-y‘;;f>-

—— S 96
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Figure 6,28

| Cbeck to see that the results obtained from Theorem 2 agree

-completely with our Venn diagram,

y Property 3 of a probability measure P has to do with the
-‘_probability P(A U B) where A and B are disJoint. In the
ff_following theorem we consider the probability of A U B where
: A and B need not be disJoint -

iy Theorem 3. Let (s, P) be a probability space. For
s _-&;all events A, B € 0(S) we have. |
/.*“'P(A U B) P(A) + P(B) - P(A n B)
}-??(See Figure 6 29 )
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We observe that A Y B = (A\B) Y B, where (A\B) and B
‘are disjoint, Hence, from property 3 of -a probability measure
we have: ,
| (1) P(a u B) = P(A\B) + P(B)
From Theorem 2(c) we have: |
| (2) P(A\B) = P(a) - P(a N B)
Substituting the right side of equation (2) for P(A\ B) in
“equation _.(1})"’ B
- Ravy B) P(4) + 2(3) - (s 1 B)
Qu 'estion: _How ca.n one prove Theorem 3 with the aid
| o 'of Theorem 12 | o
M% _Using the dart boa.rd exa.mple a,gain, let us find
U the probability that Allan hits reglon A or
‘ _-C»‘region B (that is, at 1east one of A a.nd B).
: ‘From Theorem 3 we get° B
"ffNAUB) Pu)+Pw)-NanB)
S =ara-a-6
SEE -:.',;f-_‘,"I'his agrees with our prerious result.
Property 3 or a. probability mea.sure can be extended to moze :

tha.n two die.jo:lnt events. _ 'l'hus, 1f A, B a.nd c sre dis;joint,

P(A) + P(B) + P(c) Even more genera.lly,
AR An a.re dis,joint, then.
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n n ‘
P(V Ai) = % P(Ai)

In Section 6.5 you will derive several other interesting

properties of a probabllity measure,

6.5 Exercises

1.

 stngletons |fse}] frtedmnt|fone

",_probabilities";josif?;ne;’o,, 3

'”5;°pass a certainzstreet corner d

The faces of a tetrahedron are painted red, yellow, green,
and blue. For the experiment of tossing this tetrahedron
‘and observing the}color of the bottom face, ue can use the

following outcomes and elementary probabilities:

Outeones o 'a'ed : 'w&* ‘Green | Blue

:’;What is the probability for each of the following events:
'7’J_(a) {blue} i

(e) [Pink]

'}?F7(b) [yellow or green} (f) [not pink]
x :t(c) [not red] o '

??'(d) [The color is red, green, or blue]

5utIn the experiment of counting the number of yellow cars that

,*ing a two minute interval.

"»”»the following outcomes and probabilities are given

«;_;jprobab111t1es 1““;
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Find the probability that the number of yellow cars passing

during & two minut<  interval for this street corner is:

~.(a) at most 1. (b) more than 2, (¢) between 1 and U,

, exclusive. v , , _
3. For the experiment of tossing three symmetric coins and

 counting the number of heads, we can use the elementary
probabilities 1/8, 3/8, 3/8, and 1/8 for the events 0, 1, 2,
and 3 heads respectively, Find the probability that there

1s at least one head.
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We assign coordinates to the intersections, The rat starts

at the origin and may Jump in any direction where there is

& path shown in the diagram, Each Jump is 1 unit-in

length, Starting at the origin fhe rat takes exactly 3

Jumps reaching 1 of the other 24 points.

(a) Use the counting principle and the fact that the rat

' chooses directions so that each of the four directions
possible are equally 1ike1y to find the total number

~of 3=jump- trips._

©(b) _Find the 9 trips that ‘terminate at (1,0). €40)

- (0,0) —> (0.1) — (1,1) —> (1,0),

" (c) what 1 is the probability of the ra.t terminating a

e f‘_‘::trip at (1,0) S

'n;(&)i]Find the probability of the rat terminating a trip at

‘“552,, ach of the points where this is possible."_.g.. -
iEE ; T
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Let S = {al, By B3y au} be an outcome set and

P(a.l), P(a,), P(ag), P(ay) the elementary probabilities.

_ Show that from the definition of a probability measure

P, it folloWS that the elementary probabilities must

,fulfill the two conditions:

(a) P(a1)~> 0 for 1 ¢ (1,2,3,4) and

T Pla, % |
1_=1‘( 1) =1

Try to generalize the above statements to a general
'probability space, (S,P)

,-Let P be a number between 0 and l, exclusive.

-,_7._;.;_.(;‘)__..\.:}:-Show that 1£5= {0, 1, 2], the numbers,_‘.

5 '";*‘U,_;._:_;_rulﬁn the two_ conditions in Exercise 7 above-r |

| -;f}'_isrzow’ nat,_ if 5= [o, 2 " 2, _f,_f-,,,nl, the numbers.
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10, An engineer in a transistor fectory'finds that the
.Probability that a transistor has defect A is .1;
the probability that a transistor has defect B is ,05;
end the probability that g trensistor has both defect A
and defect B is ,03. Find the probability that a
trahsistor has:
(a) at least one of defect A or defect IL
(b) neither defect A nor defect B.

11, Let (S.P) be & probability space. Prove that for every
4, B €a(s): | R
(a) P(A nB) ¢ P(A)
(v) P(A) {Paus)
e (c) P(A u B) g P(A) + P(B)
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14, The odds favoring event A, written O(A), 1s defined

o(a) , i'gi";' ; P(E) # 0. show that P(A) > .5 1f and only

if o(a) > 1.
#15, Let A, B and C be events, Show that:
P(AUBU c) = B(a) + B(B) + B(C) - P(A N B) - B(A N C)
~ -B(BnC) + P(A N B nc),
#16, Prove that P(A UB) = 1 - ?(E n B).

6.6 Uniform Probability Measure
W’e saw an instance of a uniform probebility megsure in

Example 7 of Section 6.4, We now state: .,
 Definition 10, Let (S,P) be a finite probability space.
L | _The probability measure P is called a
| | _uniform proba.bilitx measure, 1 and ‘only
if all of the elemente.ry probabilities are
| the same, In symbols: Let 5= (a), ...,an] .
o E-‘rhen P is a uniform probability measure if
: " and only if P(ai) = P(a.J) for every pa.ir of
' ;subscripts (i,J) for i = 1,2,..., n and '

‘_;_1929 ooo 9 n.

& -;:"Wehnow derive a fomule that is used to calcula.te probabilities, {

- As & preparation for

when the probe.bilﬁ 'y measure is uniform. '
the b, oot of ":hef‘_ theorem, supposm that the outcome set is

O

NPT RS

IR PO S AL

S i A T MY
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Since the sum of the elementary probabilities must be 1, each
must equa.l'llf. The same kind of reasoning can be used to show
that, if the outcome set, S = {a;» & «es s &) has n outcomes
" and the probability measure is uniform, each of the elementary .
proba.bilities is ;];-. | |
Theorem 4, Let (S, P} be a probability space with a

_‘ uniform probability mee.sure.

Let N(S) and N(A) be the number of elements

in S and A, ‘Then the probebility P(a) of

the event A is then given by: |

P(A) -g-g), .

. Proof, We know from. Theorem 1 that P(A) = z P(a, )
ook But 1n this ca.se all of the elementa.ry :
o f,-‘proba.buities a.re l; and n = N(s) Thus

P(A) _"-l + 1._ + Ve .|. ;I'-.— N g , .

| N(A) terms fj R
From th:l.s We. see the.t 1f the prob.ibility mea.sure :I.s uniform,

v}“"j-.-‘j’ﬁ:_'P(A) 1s the quotient of the number of outcomes in A and the o
” tota.'l. number of outcomes :I.n s The formula. P(A) = —%} was
**kg,for a long time the‘only definition of probability. It was,i"

o ‘f'_for :I.nst\,‘ ,ce,

‘the definitian_thg"“Pascal and’ Fernat. developed
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We now show by examples how probability is calculated
using P(A) = g—i—g‘-} ., We shall make use of what you learned
in Chapter 5, Combinatorics, You will find that the counting
principle is especially useful, To refresh your memory, we
restate this principle:
CP If a first activity can be completed in r, ways,
and then a second activity can be completed in
r, ways, and so on until a kth activity can be
completed in ), weys, then the sequence of k
activities can be completed, one after the other,
in vy o Tp ¢ eee oT ways. ’Figure 6,30 illustrates

the CP by a tree diagram in the case where r, = 3,

DI L Figure 6.30 ;
"1 We shall also have occasion to. use the following formulas

that you 1earned 1n COmbinauorics.}’, |
(a) The number of permutaxions of & set of n elements

}.S,given by.___ | o o -
n(n - 1)(n - 2)-... - 3 . 2 . 1.
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(b) The number of subsets with r elements of a set with

n elements is given by:

(n)_, (n), _nn-1) ,,. (n~r+1) nt{
r/~ ri - ri

T rl (n ~-1r)!

When a selection is said to be made at random, this means
that each possible selection has the same probability, In this
case & uniform probability is being used,

Example 1,

Figure 6,31

There are five chairs at a round tabie.‘ (See

Figure 6.31,) Two of these are selected at

random end in euch‘e way that the same chair

cannot be chosen twice, What is the probsbility

that these two chairs are next to each other?

Before reading an explanation of a soluticn to this problen,

try to decide for yourself what a suitable outcome set might be,
and keeping in mind that a uniform probability distribution is
vimplied, decide what the probability of the even+ that the selected
two chairs are ncxt to each other. There are two ways to make

the decision, one by combina+orics, the other by guessing (and
~then using combinatorics )
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First by using the brute force method one could also:

(a) Li_t all of the two-member subsets of the set of
chairs, {a, b, c, d, e};

(b) List all of the two-membered subsets of the
event "two chairs are next to each other,"

(¢) Then use the formula developed in Theorem 4,

Using combinatorics is quicker:

(a) The number of two-member subsets of a set with -
five members 1s (3) = 10;

(b) Then you can look at Figure 6,31 to see that pairing
eacii chalr with the one on its right will give the
two-member subsets that are next to each other,
1.e., 5 Of the subsets.,

(c) Using Theorem 4 then gives f%-= %-as the probability
of selecting 2 chairs next to each other at random
from 5 ¢ialrs at a round table. -

Question. Generalize this example to the case where there

are 6, 7, 8 and in ‘general n chairs around the
table. .

 Suppose that the problem in Example 1 had been worded:
"There are 5 chairs at a round table. One of'tne 5
is selected at random. Then from the remaining 4

l‘a second cheir is selected at random. ‘What 1s the
.iprobability that these twn chairs are next to each
~ other?" | | |

O Now it seems appropriate to use a sot of ordered pairs as

48
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an outcome set, You can use the idea of permutations to find
N(S). N(S) = (5), = 5 x 4 = 20, You can use the Counting
Principle to find the number of ofdered pailrs of chairs that
are next to each other, You have 5 choices for the first chalr
and, since there are 2 chalrs next to any given chair around
the table, you have 2 cholces for the second, This gives 5 x 2
or 10 ordered palrs of chalrs next to each other, By now you
must know that the probability is g,_% = }.Q= 5
Example 2, There are nine marbles numbered 1, 2, ... 9
in a bag, Marbles 1, 2, 3, 4 are blue and
marbles 5, 6, 7, 8, 9 are red, One of the
marbles is selected at random from the 9,
Then e second marble is selected from the
8 remaining. Find the probability that both
are blue.- | | ‘
In Example 2 the wording clearly suggests that a suitable

outcome set would be & set‘of ordered pelrs of marbles and that

- since the selection 13 without replacement, ordered pairs with -

equal components would be ruled out, ,
Question: For tre sake of variety (as well as your
- | o edification)‘QSefFigure 6.32 to find the
snswer to Example 2, Also answer the
foliowiﬁg: _
“~;(a)‘ Wh1ch set of dots represents the outcome
set? |

‘T(b)':Whichteet of dotse:epresents the outcomes.
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in the event "both marbles are blue,"
(e¢) What is the probability of the event
described in (b).
(d) Why were the dots on the main 4iagonal

deleted?
(‘I% ¢ o 0 8 & 8 o

3p o ¢ ¢ a4 o ¢ o

red 174 ¢ ¢ o o o0 o . e o
O e e o o e 8 o o

(a4 [ c e s & o

blue {21]|° ° U &:te{,’g'ﬁ;
ggagles are

Example 2 can be reworded to suggest that a suitable
uutcomes set would be all two-member subsets of the set of
marbles. Then the problem is easy to solve using what you
learned 1n combinatorics about the number of r-member subsets
of a set with n members,

Question. e_501ve Example 2 after rewording to the

" effect ... "Iwo marbles are selected at random
i"j‘t‘vzz'om":Lt:h{t"av_'9.'? fSelec£>e§ enboutcome set the

Q@ Y two-member subsetsrbf'the set of 9 marbles,

v[]{u:‘ l.{- . TS e
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Example 3, There are 10 boys and 12 girls in a class,
’ Eight students are selected at random to
constitute a committee, What is the
probability that there will be 4 boys and
4 girls on the committee?
In problems like thils we use subsets as
~outcomes, The total numb:r of outcomes
is (282> . By using the counting principle,
1t is easy to see that the number of subsets
with 4 boys and 4 girls is (ﬁf) . (ﬁf) .
Thus our probability is:

) B w
4. 4 _ 15
&) ?
, - Check the computetion of Tég' ,
Teble 6.7 is a. teble of random numbers, The table consists of
digits arranged _m rows and columns, The digits have been

_""selec\t}:ed by éﬁﬁe“' randonr“prdcess:'“‘***rhis* means, aj,mo‘nlg:f'other*things,
_that they have been selected in St;c_h a way that in.'choos:l.ng_
single’digits'from the table, each of the ten digits is squally
likely to be'sélected‘_;Eacnvof'tne‘digigs has the probability
of 0.1 for selection. o .
if you select a single digit from a ta.ble of ra.ndom numbers,
" the probability tha.t :Lt is 7 1s O.l. The probeb‘llity that it is
even 15 0,5, (Can you explain why?) ¥ o

[ T

i
:“
A
£




23018
76576
61272
ol4659
53947

7660
33253
61812
50444

27393
64701

54254
30390
30160

01623
00663
39637
18346
36015

e

57055

12733
40373

65166

47672

64339
138755
55758

51298

73346

34585

3552
2328

97266 -
91129

1%
66562

" 16801

.%
]
i

i
A

70826
38158
23923
ool
02640

15914

Lo554-

17914
50784
o703

78219
02457
35707
37762

70293
11770

01929
72437

61920 -

19076
36704
26844

97430

fgggggﬁ?,

- 10329
27096
82246

. Tha81
08747
- 58653
- 75002
75202

819
0217
92193

02719
21476 if;66002

k]
L .
) :
[
N
b
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A TABLE OF RANDCM NUMBERS

uogﬁl
55042
30483
oL4615
97591

29821

387

2624
57949

03451
glégo

3984
75943
31830

68295
80716
35081
65329

84726
08487

26961

, _28724 _
: 5 -

e

761
: 94995'

5476

90929

55659
56609

22192
T3T4T

- 58706

337
37177
05353

‘00230
37371

" Table 6,7

50

e
0 91
02163 43236
14601 73036
66940 95692
o4270 20023
88345 14830
6419 45800
69071 06672
09636 4384
09213 78952
19167 TOTE1L
95656 08613
57616 60085
97344 58501
28263 22"26
51129 5
15498 862
9109 75364
53714 98790
33754 95846
- 683%0 50226
68382 14892
18627 48103
79538 09071
82806mmfw38829.
17431 8456
26071 743 0
- 30607 68410
79535 90512
- 57038 84155
43607 19132 ¢
f95h9g 31143
3631 i 40114
31831 ° 8oigh
36963 . 54818
58609 : 15883
© 00615 . 10525
11109 84054
03472 76458

43739
29696
05158
20220
15892

23018
05692
21676
15816
46311

14240
69647
g 006

104
10138

97642
27720

88062 -

58584
69562

- 06857
35582
71309

T9279

9269

2672

4hli1o

=
45888
19698

57770
s
‘“35 ;

58919
- Th387

16137

35168M-m”
79060
gﬁu?s

L

88519
19015
81197
L9825
34629

12681
54180
53625

S

65983
o133
8ii104
08198

8455

6093
11338

16248
81759

T4128

38475
13065
65030

TUOR6.
32894 -
61540

70619
;6414

25201

79963
78500

‘12867
- 23459

32179

9509
87590
96896
25362

58374
39833
13871
73845
14693

89036
91296
2251
5

05681

9274

51568
S8a01
15358

82071
92814
74725
68897
29184

33143

30822

05946
90043
33138

52220

86947
75053

03272

99265

18125

13922
17521
32185
oue6l

13227

o188
/90261
158586

!
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Example 4, There are many ways to use a table of random
numbers, This example will illustrate one
particular way of using such a table, Out of
a group of 100 grade 9 students, 40 are to be
selected at random for a speclal course in
game theory, Each of the students are
initielly assigned s two digit number from
sequence 00, 01, 02,..., 99.

Question: If the probabiiity of selecting any one of the
10 digits is ,1, what is the probability of
selecting one of the above two-digit numbers
in a table of random numbers? If you were

_ to use Ta.ble 6.7 to select the group of 40
~ you might start by using just the first 2
columns of digits as shOWn below:
| Student chosen = |
18t s oed 18- _
 me——pr
f eﬁé’.f e _,Eg.y

.‘:The"first'studentTenesen‘for'the group of 40
ﬁoulﬁ‘be the“ene’to'whem 23 Was'initially
assigned. Then 76, 61, 04 ‘53, ete, would

B follow; Tnis procedure would continue until

‘.'f40 students were seleeted thice that

1ja1though the original assignment of numbers to
:students was not ‘a random one, the use of the

~ ERIC RETR random number table made the selection of ‘the

re«o»
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4o for the experimental group a random one.
Some important considerations are:
(a) If a pair of digits occurs a second
time you simply skip it and go on,
(b) If you reach the bottom of the two
columns before 40 are selected, you
start at the top of columns 6 and 7
end continue,
-(c) Rows could be used instead of columns
by selecting consecutive mutually
exclusi#e'pairs.
(d) You should make & note of the page, row
' .,andicelumn:when you finish using the table
for the next problem, When you start
ueingifhegteble.for,the next problem, you
'shoulﬁrstait ﬁhereiyqulieft‘off, If you
keep repeeting'tne use'Ofithe'same set of
| digits you could be biasing ‘your selection.
Qnestions: '(e) VHow would you choose 25 peraons at random
o .’:eu;emong,67“wipn~the aid of random numbers?
.aj(b)izﬂbﬁ ﬁoﬁld you use :enqen_nnmbers.to_
o .vsimulate.__i" S “ )
(1) tossing a symmetric d1e°.:f
L «-,".(2) spinning e spinner .
ﬁ ”_;(3) tossing a fair coin.. ’ |
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If your experiment is to select two adJacent_digits from the
table, the sample space is (00, 01, 02, ... s 98, 99}. The
outcomes then represent two-digit random numbers,

In this case also you can assign a uniform probability
measure to the set of 100 outcomes. For instance, the probability
that & chosen two-digit number is less than 36 is fg% = 0,36,

In some of the following exercises, and in Section 6.8 you will

work with random numbers,

-6;7 Exercises

1. Five chalrs are in a row. Two chairs are selected at random.

What is the. probability that they are next to each other?

2. A two-digit random number is selected from a tab1e of random
| two-digit rumbers. What 18 the probsbility thet the number
| (a) is even° (v) is greater than 25? (c) has_9 as its
| lest digit’I ) o

3. A three digit random number is selected from e table of
random three digit numbers. -
(a) What is the outcome set? (v) What is the probability
that the chosen number is odd? (c) ees is less than
100? (d) ... starts with’ a 99 o

"4: Two symmetric dice are tossed. Construct a graph-of the
| 'goutcome set such as ‘the one in Example-B, Section 6 2 and
i'il]ustrate the following events by circling the appropriate
JERJ(i ,sets of dots. Useuthe graphs{to findpthe probabilities of




5.

7.

8..
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the eventst

(a) the total number of dots (on the upper faces) is 7.
(v) the total number of dots 1s less than 6,

(¢) et least one die shows 2 dots.

(d) both dice show more than 3 dots.

(e) at least one die shows at least 3 dots,

Four of the smallest squares in the lattice are selected at

random, Find the probabillity that the four squares

(a) are in the ‘same row. (o) are in the same diagonel,
(c) are distributed so that there is exactly one in each

row and exactly one in each column.'i,

Derive the elementary probabilities in Exercise 3 in

Section 6. 5

Derive the elementary probabilities in Exercise B(b) in
Section 6. 5 for n=>5andp-= /3

If you draw 5 cards from a deck of playing cards, what'is
the probability of getting 3 aces and 2 kings? (The deck

| consists of 52_oards, 4 of which are aces, and h_kings.)
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We will temporarily define a five=-letter word as any ordered
quintuple of letter with 2 vowels and 3 consonants,

We will define a vowel as any member of {u, e, i, o, ul},

and & consonant as any of the other 21 letters in the

alphabet, We will use a symbol like CVCVC to represent the

- form of words with an alternating consonant-vowel arrange-

ment, You may repreat letters in a word in parts (a) to
(d) below. The form of a word, as used here, is a mapping,
It shows which positions get consonants (C), and which

get vowels (V), e.g.,
: 1-\

2 c

3 /

e and i

(a) Use the counting principle to find the number of
words with form CVCVC. (Express answer as factors
of product.) '

(v) DO the seme. for CCCW

(c) How ma.ny aifferent forms are there for & five-

" letter word?

(d) What 1s the total number of five-letter words?
-~ (e) _If you use a uniform probability measure, what is

the probability of selecting the word "teded?"

() _.Repeat (a) and (b) with the restriction that no

 letter may be repea.ted within the same word,
consider the experiment of tossing three symmetric dice,

Use the set of ordered triples of numbers from 1 to 6 as

e
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an outcome set, Also use a2 uniform probability measure,
{a} What is the probability of getting 3 sixes on a
toss?
{b) In how many ways can an outcome have 2 fives and
1 six?
(¢c) What is the probability of tossing 2 fives and a
six?
(d) What is the probability of getting O sixes on & toss?
Ten cards were numbered from 1 t2 10 and placed in a hat,
A set of 3 cards was drawn at random from the hat, i,e.,
a three-member subset of a ten-membered set, What is the
probability that one of the cards drawn was the 5 card?
State & theorem about probability that you used to solve
this problem, |
Toss 3 symmetric dice, Let the outcome set be the set
of 216 ordered triples of the cartesian product,
(1,2,3,4,5,6} x (1,2,3,4,5,6} x (1,2,3,4,5,6},
(a) Give the roster name for the set of sums of the
triples of numbers,
(b) How many of the triples have a sum of 172
(¢) What is the probability of getting a sum of 17
on & toss of the thrzse dice?
(d) Find the probability for each of the possible sums
starting with P(3) = 1/216,

o8



6.8 Looking Back

When you studied probability in Course I Chapter 5, you
performed trials of experiments and you studied the behavior of
relative frequencies, For instance, in connection with a tack=-

tossing experiment you obtained Figure 6,33,

Relative
Frequency

1.00
090
080
070

0.60
040 |}

0.30
0.20
010
0.00

20 ¢
40

P~ o e = -

Figure 6,33

You saw in connection with this and similar experiments
that the relative frequency stabilized, Thlis means that as the
nwiber of trials continue to incfease the relative frequency tends
to stay close to some number between 0 and 1,

In this chapter you have learned, among other things, to

calculaete probabllities, Since the properties of probabilities

Q
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are similar to those of relative frequencies, 1t seems reasonable
to ask 1f there 1ls any relation between probabllity and relative
frequency, We consider thié question in connection with a
concrete experiment,
Example, Let us return to random numbers, The experiment
is to select a two=-digit number from Table
6.7« A 1s the event that the number selected
1s less than 40, By the method of Section
6.6 you can easily find:
P(A) = 0.40
Since this probablility was obtained theoretically,
it is interesting to see 1f our experiment
yields a relative frequency close to 0,40,
See Sectica 6.6 Example 4 for some suggestions
on the use of a table of random numbers,
Using the format of Table 6,8 and the suggestions of Example
4, Section 6,6, record the results of 50 trials of the experiment
described in Example 1 above, Also record the frequency and
relative frequency for the event A,
Question, Did the relative frequency of A tend to
0.40 as the number of trials approached
50?7 If not, what would you guess the reason
might be?
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TRIAL

NUMBER  OUTCOME FREQUENCY OF RELATIVE FREQUENCY
A OF A
1 52 0 0.00
2 99 0 0.00
3 46 0 0.00
4 14 1 0.25
5 42 1 0.20
6 22 2 0.33
7 87 2 0.29
8 20 3 0.38
2 39 4 0.4k
10 51 I 0.40
11 49 4 0.36
12 22 5 0.42
13 56 5 0.38
14 83 5 0.36
15 24 6 ___0.ho
16 02 7 0. 44
17 27 8 0.47
18 73 8 0. 44
19 00 9 0.U47
20 86 9 0.45

Table 6,8
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Questions. Make a graph like the one in Figure §,53 showing
your results. What conclusions follow from your
experiment? What relationship exists between the
probebility 0.40 and the relative frequencies
that you have observed? Do you sgree that the
probability 0.49 was a2 good prediction of the
relative frequency for the svent A in 50 trials?

For some situations the symmetry of the experimental objects

or the results of previous experiments might convince us that a
uniform probability measure is the best model, But in certaln
other situations the lack of symmetry or experimental evidence
may lead us to believe that a uniform probability measure is not
appropriate, Consider, for example, the two experiments in

Figure 6,34

T

Tossing & Coin Tossing & Thumbtack
Qutcome H T Outcome Pin Up Pin Down
Elementary Elementary
Probability 0.5 0.5 Probability ? ?
(a) (b)
O
ERIC Figure 6,34
— {9
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Do you agree that it seems more appropriate to use a uniform
probability measure in the coin tossing experiment than in the
tack tossing experiment? If you think about the two experiments,
you will see that there is some kind of symmetry in the coin
tossing experiment that is not found in the tack tossing experi-
ment, You might ask how we assign the elementary probabilities
in the tack tossing experiment, One way is to perform trials
and use thé observed relative frequencies as elementary probabi-
lities, This is a method that is studied extensively within
the field of statistics, You will learn more about it in later

courses,

6.9 Exercises

1, ©Suppose that you selected 50 family names at random from
a telephone book, The outcome set would the set of
possible lengths ¢f the names, i,e,, the number of letters
in the name, Do you think that with a large sample you
would use a uniform probability measure to prediet the
length of names? Design an experiment and perform about
30 trials where you would use a table of random numbers
to select a page of the telephone book, then use the table
to select a column, and then use the table to select a
name within the column. Make a table with the headings:

Name length Frequency Relative frequency
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Examine the relative frequency distribution and make a
decision'about what kind of a probablility measure you would
use for the lengths of names in the telephone book,
2. Consider the experiment of selecting a card at random
from a deck of pleyling cards and recording the suit, Let
the outcome set be:
S = {heart, diamond, club, spade}

Shuffie the deck well each time before making a selection

and perform €4 trials.

(a) Record the frequency of each outcome,

(b) Record the relative frequency of each outcome,

(¢) What is the sum of the relative frequencies?

(d) Would you use a uniform probability measure for
prediction in this experiment?

(e) What wae the relative frequency for each of the
following events: "not a spade;" "a red suit;"
"red suit or black suit " ?

{f) What probability would you assign the events in
part (e), using & uniform probability measure?

3. Classify each of the following experiments with related
outcome sets according to whether or not you would choose
& uniform probability measure:

(a) Tossing two coins; outcome set is the cartesian product,
(B, T} X (H, T},
(b) Tossing two coins; outcome set based on number of heads:

S = {no heads, one head, two heads)
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Selecting an item from a production line:

S = {defective, non-defectivel,
Selecting a card from a deck of playing cards:

S = {face card, not face card}.
Selecting a card from a deck of playing cards:

S 1s the set of 52 different outcomes,
Selecting a marble from a box which contains 3 red
end 5 white marbles:

S = {red, white}.

Selecting a marble from s box which contains 4 yellow
and 4 blue marbles:

S = {yellow, blue],

L, Suppose: for a certalin coin we have evidence that probability

1/3 is a reasonable assignment for heads in the experiment

of tossing the coin, What would you predict as the

frequency for tails in 51 tosses? What would you predict

as the relative frequency of tails?

6.10 Looking Ahead

In this chapter you have been introduced to these basic

concepts of probability theory: outcome set, events, and

probebility measure, This is not your last contact with this

theory,

to come,

In this section we shail give you a preview of things

One of the most important conepts in probability theory

O ls that of independence, Briefly and somewhat loosely, two

ERIC
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events A and B are independent 1f the fact that one of them has
occurr=d does not affect the probability of the other occurring,
This doesn't qulte tell the whole story, but it will do for now,
You will meet this concept next year and also the related
concept of conditional probability,

We next 1llustrate in an example an important concept that

you will study at length In future courses, the concept of a
random variable which you have encountered before without this
name, This concept will bring together many ideas about
experiments, mappings and probability,

Example., Consider the experiment of tossing a symmetric
coin twice, Let (H, T) represent the outcome
that the first toss turns up heads and the
second tails., The outcome set is then:

s= {(4, H), (H, T), (T, H), (T, T)]
{#, T} X (H, T},
We 1llustrate this outcome set in Figure 6,35,

or S

Second This point is (T, H) for
toss , 3 3 the outcome first coin
tail, second coin head.
< ¥ %
d P e e
1 1
| ¥ B
» PFirst toss
H T

Figure 6,35
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It is reasonable t© use a uniform »iobabllity
measure for this experiment. In other words we
assign the elementary probability 1/4 to each

outcome.

Suppose we are interested in the number
of tails obtained. We would then define a
mapping X with domain S and codomain R, which
assigns values as in Figure 6,36, This mapping
X i3 called a random variable., Any function
irom an outcome set to the real aumbers 1is

callied a random variable,

Second tossl

R A >
4\'\ > >

H T First toss 0O 1 2 No.of

talls

Figure 6.36
What 1s the probability of exactly 1 tail? There are two
outcomes, (H, T) and (T, H), that result in exactly one tail and
‘each has probasbility 1/4., Therefore the probability of exactly

s 1/% + 1/4 = 1/2. One easy way to find this and

]
e

one tail
similar probabilities is to let the elementary probabilities

"go along" with the mapping. In other words, the probability of a
certain number of tails 1s the probabllity of the event in the
original outcome set that maps onto this certain number of tails
as pictured in Figure 6,36,

It is now easy to find the following probabilities:

O

The probability of exactly two tails,
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The probability of at most two tails,
The probability of at least two tails;

We will have more to say about random variables in the future.

6.11 Exercises

1, Consider the :xperiment of tossing three coins and the
outcome set
S = (HHH, HHY, HTH, THH, HTT, THT, TTH, TTT}.
Let the random variable X e the mapping that maps each
outcome on the number of heads in the outcome, For

example, X(THH) = 2,
(a) Find the image of each outcome in S,

(b) Tabulate the range of X,
(¢) uvraw a mapping diagram to illustrate the random

varieble, (See Figure 6,36,)
(d) Assign to each image a probability which is the sum of

the probabilities of the outcomes in S which map onto
that image.
(e) Make another mapping dlagram showing the assignment
of probabilities to the images under the random
variable X.
2. Let an experiment be to select a card at random from a deck

of playlng cards, and the outcome simply the selected eard.

b8
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Let Y be o random variable which maps an.outcome onto 1 if

is a red card, and maps the outcome-onto 0 otherwise,

(a) Using the same procedure as in Exercise 1, find
the probsbility of 1; find the probability of 0.

(b) TLoes the assignment of probabilities to {1, 0} in
(a) satisfy the 3 requirements of a probability
measure?

3. Five cards are placed in a hat. The cards are numbered
Trom L to 5. A card is drawn at random and not replaced,
A second card is dravn at random from those remaining.
(a) Nzke up an outcome set for the experiment based on

ordered pairs,

(b) Assign probabilities to the outcomes.

(c) Find the images of the outcomes for the random

variable wnich assigns the absolute difference of
each pair to the pair. (Define the absolute

difference of (a, b) to be |& - bl.)
(d) Assign probasbilities to the images in (c) based on
the assigned probabilities in (b).

6.12 summary

Let S Ye an outcome set. A 1s an event 1ff A = S; or
equivalently, iff A € #(S), where #(S), the power sct of S, is

the set of all subsets of S, If A and B are events, then:

O
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() A yB is the union event of A and B,

(b) A nB is the intersection event of A and B,

(¢) A is the complementary event of A,

(d) AN B is the difference event of A and B,

(e) A and B are disjoint if and only if A N B = &,

(f) A, B and C are disjoint 1f and only if A NB = §,

BNC=g@gandANC=4d,

A probability measure F is a real valued function with #&(S)
as its domain, and it has “the properties:

(1) o {P(A) {1 for every A € &(S).

(2) P(s) =1,

(3) If A and B are disjoint, then P(A U B) = P(A) + P(B).

We call P{A) the probability of A, and the ordered pair
(S,P), consisting of an outcome set S and a probability measure
P, a probability space,

Events that contain exactly one outcome of outcome set S
are called singleton events, Probabilitles of singleton events
are called elementary probabilities,

Let (S, P) be a finite probability space, The probability
measure P is called a uniform probabllity measure if and only
if all the elementary probabilities are the same,

Theorem 1, Let (S, P) be a probability space, with S a

finite outcome set, Then for every event

A € ¢(8) we have:

P(A) = £ P(a).
8y €A

"0
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Theorem 2, Let (S, P) be a probability space, and let

A, B ¢ 2(S), Then:

(2) P(g) =0

(b) P(a) + P(R) = 1

(¢) P(AN\ B) = P(A) - P(A nB)
(¢) If B c A, P(B) { P(A)

Theorem 3, For all events A, B € #(S) we have:
P(A uy B) = P(A) + P(B) - P(A n B),

Theorem 4, Let (S, P) be a probability space with a uniform
probablility measure, Let S have n outcomes and
let the number of outcomes in the event A be
(A), The probability P(A) of the event A is
then glven by:

P(A) = ?‘:{is\'} .

A table of random numbers was included and some problems
were done to illustrate the use of such tables,

A review of the stabllity of relative frequencies and the
relation between probability and relative frequency was included
in a "lovking back" section,

A preview of 1deas to presented from probability theory in
later course included independence and random variables,

A random variable is a mapping from an outcome set to the
real numbers, The probabllities for the images under the
mapping are determined by the probabilities of the singletons

from the original outcome set.
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6,13 Review Exercises

1, A coaxial cable from a radio station to its trasmitting
entenna is 5,000 feet in length, and has.a breek which
must be located. Assuming that each foot of cable is
equally likely to have the break, what is the probability
thas the break is within 2,000 feet of the station? What
is the probability that the bresk is not within 2000 feet
of the station? What is the probability that it is within
2000 feet of the station or within 2000 feet of the
antenna? What is the probability that it is within 4000
feet of the antenna and within 4000 feet of the station?

2. In studying the three possible outcomes of an experiment,
it was found that the second outcome was twice as likely
as the first and the third was 3 times as likely as the
second, What is the Probability of the singleton

event that contains the first outcome?

3. If you select a four-~digit random number from & table
of random numbers, what is the probability that:
(2) all four digits will be the same?
(b) no digit appears twice in the number?

4. If you have six purple socks and four yellow
socks mixed and dress in such a hurry that you do not
observe the colors, what is the probability that the

Q socks you select will be of the same color?

2.

N .
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5.. Seven men checked their hats when thay entered a restaurant.

6.

A friend of the hat check girl removed the tags as a

prank. When three of the men returned, the hat check girl
chose three of the hats at random. What is the probability
that they belongéd to those three men?

If you toss 5 symmetric coins, what is the probability that:
(a) exactly three will be heads?

(b) at least three will be heads?

(¢} at most three will be heads?

An experiment consists of selecting 2 cards, one after the
other, from a set of 7 cards numbered from 1 to 7
(replacing the first card before selecting the second.)
{a) How many members are in an outcome set (which

contains every member of {1,2, ..., 7} X {1,2 ... 5 T})?
(b) Draw a graph of the outcome set letting the first

card selected be represented by x and the second by

Ve

Define max(x,y) = x if x> y and y if y > x.
Define min(x,y) = x if x { y and y if y{ x.

~ Let the random variable X map (x,y) onto max(x,¥).

Let the random variable Y map (X,y) onto min(x,y).

(3
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For example X(5,2) = 5; Y¥(5,2) = 25 X(4,4) = ¥(4,4) = 4,

Make graphs like those below and use them to show a

mapping diagram of X:

Domain

n

3
2
1l

X(%,y)

1 2 3

Mske graphs like those below and use them to show &

mapping disgram of Y:

Domain

- N w4

74
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Chapter 7
POLYNOMIAI, AND RATIONAL FUNCTIONS

7.1 Polynomial Functions

If a spherical object is thrown upward at a velocity
of 32 feet per second, its height at a later time
can be found by the formula

h = 32t - 16t3,

where h represents the height and t the number of
seconds after the object was thrown.

Questions. (1) How many seconds will it take
for the object to return to the
ground?

(2) How high will the object go?

The above problem, while oversimplified, indicates the importance
of mathematics in studying physical phenomena such as motion. Actually
the formula "h = 32t - 16t®" describes a function |

f:  t————> 32t - 163
for t > 0. Of course the variable used is of no importance; so we
could just as easily describe the function in the following way:
f: X———> 32x - 16x°
with domain (x : x € R:}. (R; is the set of non-negative real
numbers.) This particular kihd of function is very important not
only in applications of mathematics but in mathematics itself,
and in this chapter we shall work with many such functions.
Consider for instance the function f defined by

f: x— x% + 3x

-7 -
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where the domain and codomain are both the set R of real numbers.
(Unless otherwise specified all functions have domain and codomain
R.) Som= of the assignments made by this function are as follows:
3—3" 4+ 3(3) =18
2 —(-2)" + 3(-2) = -2
100 —(100)” + 3(100) = 10300
This function f can be "built" or generated from some real
fur.ctions already familiar to youw:
Cy: X —+3
JR: X =——sX,
The steps in this generation may be described in the following
ways
1) What is [c,ejgl (x)?
[eaedg] (%) = cy(x) ¢ Jg(x)
3 « x

= 3x

Now we have already generated a new functiongy call it
g. Thus,
g x —3x,
2) What is [Jg-Jr] (x)
[3gedg] (x) = Jglx) « Jg(x)

= X . X

-~

= x2
We have still another function; cell it h, That is,
he x—»xa.

3) Having generated the g and h functions, we can now ask:

ERIC i
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What is [h + g] (x)
[h+ g] (x)

-~

h(x) + g(x)

x?® + 3x

It is important to notice that the function f was generated
by only addition and multiplication of functions, one the iden-
tity function and the other a constant function, It is possible
of course to use more than two functions at the outset, as in
Example 1,

Example 1, Using addition and multiplication only,

generate a new function from the following:
Cgt Xe—m»5
C,t X——ait
JR: x-;-—>x:

Here are some of the functions that can be

generated:

(a) [cg + cil(x)

i

eg(x) + ci(x)
=5+4%
=5
Hence: (c, + cb]: x—-5%
(b) [cgdgednl(x) = cg(x) + dg(x) + dp(x)
=5 .«%x X

= sxa

Thust [cy*Jg°dglt *x——s-5x°
(¢c) From the two previous functions, we

see that:

[[cs"dg*dg] * [Cs * qi]](x) =

5x2 + 5
pp A
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Let us call this new function p;
that is,
p: x—=5%x3 + 5%,
An important feature of the function p in the example is that
it was generated by using only addition and multiplication of con-
stant functions and the identity function. Such a function is

called a polynomial function,

Definition 1. jR is a real polynomial function.

c., a € R, are real polynomial functions,

a’
Any function generated from a finite number

of the above functions, using no operation
other than addition and multiplication of

functions, is a real polynomial function.

Example 2, Is g x-— -4x? + 5x a polynomial function?
Since =U4x2 + 5x = (-4)(x){x)(x) + (5)(x),
the function g = [[c_s*Jg-dg*Jg] + [Csedgll,
where c_,: X —» -4
JR: X =—» X
Cqt X —> 5,
Since g may be generated from the identity
function and constant functions, using only
addition and multiplication, it is a poly-
nomial function,
From Example 2, we know that the function g x—-U4x3 +
5x is a polynomial function, The expression "-U4x3 + 5x" is re-

ofarred to éimply as a polynomial, Every polynomial function has

- polynomial associated with it. .78
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The real polynomial function g may also be written
g y— -4y® + 5y, or g: t——-4t® + 5t, We refer to the
corresponding polynomial -4y® + 5y as a polynomial in y, and

to -4t% + 5t as a polynomial in t, etc,

Example 3, The function h: x —4x4 - Tx3 + lx - 9
is a polynomial function.
The polynomial associated with this function
1s "&wt - Tx2 + 1llbx - 9"
Example 4, 1Is x—»;c31 a poiynomial function?
The constant function ¢, and the identity func-
tion JR seem to be involved here, However, in
order to generate the given function, it is
necessary to divide c; by JR' Since this is
something other than addition or multiplication,
the given function is not a polynomial func-
tion.
Examplie 5. What is the polynomial associated with function
p = [[ca'JR] + [c-s'JR'JR'JR] + Cq + [c-a'JR'JR” ?
[caedgl(x) = cy(x) Jp(x) = 3-x
[oogedgedgdg (%) = c_g(x)edp(x)* dp(x) - 35(x) =
~5eXeXeX
ce(x) =6
[csIgedgl(x) = ca(x)dp(x)Jp(x) = =B.xex
Therefore, the associated polynomial is

3x - 5x2 + 6 - 8x°.

"9
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Incidentally, since addition of functions is associative and

commutative, it is permissible to write the polynomial in Example

5 as "-5x3 - 8x? + 3x + 6." It is in fact quite common to write

polynomials in this manner, so that the exponents involved appear

in descending order from left to right, going from the greatest

exponent to the least.

7 .2 Exercises

1. Write the polynomial associated with each of the following

polynomial functions,

(a) [cgec,l)
(b) [cg + c,]
(c) [, » 3]
(4) [e, + dp]
(e) [lcaqrdgedgl + [cfp +dp] + cyo ]
(£) [[Jgedgedgedgdgl + gl
(g) [[Jgtig+ig+igtigl * IRl
(h) [[cyedgedgl + [Cmyedgl + o)
(1) [(cay*Jgedgedg] + [Cyaedpedg] * [C4edg) + co ]
(3) [eqedgl
(k) [[Igedgl + ¢, ]
(1) [(cardgedp-dnedgl + [Coavdgrdgl + Cy]
2. Write the following polynomials in descending order of expo-
nents,
(a) 3x + x5 + 14 (e) 4 + 3x - 7x® + 8x3
(b) -x® -Tx® + hx (f) %x + Tx® - g
() xo + x8 + x? (g) J3x® - x + 17
(d) -3x® +7 - 2x
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3. Show how a polynomial function can be generated by constant
functions and the identity function by addition and multipli-
cation.Which of the following functions are not polynomial

Zunctions? Explain why not,

(Y f: x — 2x7 + 3x8 -8 (a) x _r»%
() & x—e%x13 (e) x—=-%
(¢) h x —>%x+l (£) X =t o x2 - Bx - 10

4, Which of the following are polynomial functions? For each
polynomial function, write the associated polynomial,

() [Jg + cs] (Q) [e, + Jg]
(v) fep - 3Rl (e) [eyg  Jgl
(e) f[ep o gl

5 P! X anxn + an_lxn" + hee + 24X + 84

where all of the a's are real numbers, and n ¢ W, is a
polynomial function, Explain how it is generated from
the identity function and constant functions.,

The expression "anxn +a__ M 4oL+ oagx 4 ao" 1is often

1
used when dfscussing polynomials in general,
6. Using the following functions (identity and constant func-

tions) generate five different polynomial functions.

Jrs C.ps Cyy C
R i A,;

7. D8 x—---g-xa + Tx - 8 is a polynomial function,

Find the following:

(a) »p(-1) (b) p(0) (e) »(3) (a) p(-4) (e) p(10)
8. (a) Explain how the definition of polynomial function in-

cludes c, as a polynomial function, What is the range

°F o 81
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(b) Explain how the definition of polynomial function in-

cludes c, as & polynomial function, What is the range

(e) [co + Jjrl = ? (@) [co - gl=71 (e) [ - gl = 2
9., (a) Are [cgedg] and (dg + jR] polynomial functions?
Does [c,-jR](x) = [Jg + jR](x) for all x € R?

(b) True or false: [cgejp] = [Jg + Jg + Izl

(¢) Describe another way to generate the polynomial func-

tion
[3g + Jg + «o¢ + I3
m addends, where m € W,
10. (a) [c, + el =72 (d) [[c.a®dg Jg) + [cavdgedgll =2
(b) [co +cg) =2 (e) [eyefcaedgedgll =

(c) [co + {ca’JR’JR]] = 7

7.3 Degree of a Polynomial

We have already noted that a polynomial is associated with
every polynomial function, and we shall study the polynomial
functions largely by means of thelir associated polynomials,

First, we need to define some words commonly iised in discussing

polynomials,
As in Exercise 5 of the preceding section, we shall use
n n-1 1
a X + an_‘x + eee T X 1+ a,,

vhere the a's are real numbers and n € W, to represent a real

polynomial, a, is called the coefficient of xn, an_‘ is called

52
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the coefficient of x™', etc., More generally, if “aixi" appears

in a polynomial, "a," 1s called the coefficient of "x'". The
following examples should help to make this clear,
Example 1, In the polynomial "5x3 + Tx2? - 3x + 2,"
n=3, nl =2, ete.,

a = a, =5, so that the coefficient of x2 is 5;

n
8.y = 8 = 7, so that the coefficient of x? is T;
8.o = 8 = -3, so that coefficient of x is -3;

ag = 2,

"ao" is callied the constent term, since it comes from the

constant function Co. 2 without multiplication by JR' Thus, in
]

the polynomial "5x2 + Tx® - 3x + 2," of Example 1, the constant

term 1s "2," "a " (a #0) is called the leading coefficient. The -

leading coefficient of "5x2® + Tx2 - 3x + 2" is "s5."
Example 2, In the polynomial "4x2 + 7,"

a, =8, = I, so that the coefficient of x2 is 4}

an-; = a, =0, so that the coefficient of x is O}

a, = T, so that the constant term is "7."

Definition 2, The degree of the polynomial function

n Ney
H X e— X" + a X +
p a'I‘I. N=y

(anfb,n € W) is n, This is abbreviated as

LK N ] +%X+a°

deg(p) = n., The degree of the associated
polynomial is also n, The constant poly-
nomial function c, and its associated poly-

nomial "O" have no degree,

83



- 80 -

"~ Note: When dealing with exponents, we define x° = 1., Thus in

Definition 2, a, = aoxo. Therefore, when n =0, p: X —»a

so that deg(p) = 0, and deg(ao) = 0,

0

Example 3, The degree of "-2x2 + 5x - 10" is 3,

Example 4, Deg(c,) = 0, since cg: x —5 = 5x°,
Also of course the degree of the polynomial "5"
is zero.

Notice that in the definition of degree of a polynomial func-

tion (and polynomial) it was stated that a, # 0,

Example 5. Find the degree of the polynomial function
f1 x—>0x% +5x - 2,
At first glance, it might seem as though we
have a polynomial function of degree 2., How-
ever, the first non-zero coefficient is 5,
so that "5x - 2" is of degree one, Therefore,

deg(f) = 1.

7.4 Exercises

1, Find the degree of each of the follbwing polynomial functions,

(a) PP X = Tx - 3 + 5x° (d) cq: x—38
(b) Q@ X —x5 - 82x2 + 14 (e) ey x=—=0
(e) r o x -—-v-0x4 + Tx3 + 0x° - 10x - 13

2. Find the degree of each of the following polynomials,
(a) -x® +2x+ 3 (f) Ox* + 0x® + x® - 30

(b) 2x +3 (g) x* +0x® +0x2 +8x+ 7T

4
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() 3 | () J7x°

(d) o (1) omr

(e) 15x7 + 2x5 - % (3) =

In the polynomial "-5x3 + %-xa N %-“:

(a) What is the coefficient of x?

(v) What is the coefficiént of x2?

(¢) Wnat is the constant term?

(d) Wnhat is the greatest power of x appearing in the poly-
nomial?

(e) What is the degree of the polynomial?

(f) What is the leading coefficient?

In the polynomial "O0x3 - 8x? + 6x + 15":

(a) What is the coefficient of x?

(b) What is the coefficient of x2?

(c) Wnat is the greatest power of x appearing in the poly-
nomial?

(d) wWhat is the greatest power of x having a non-zero coeffi-
cient?

(e) What is the degree of the polynomial?

(f) What is the leading coefficient?

n-

n
Remembering that a x" + 8y X v, T X e, 5. used

to represent a real polynomial, answer the following ques-
tions:

(a) In the polynomial "5x2 - 7x® + Ux - 8," what is a,?
(b) In the polynomial "x® - 10," what is a?

(¢) In "x® - 2," what is a,?
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(d) In "7," what is a;?

(e) In "-4x7 + 5x8 + Tx* - 8x® + 18x - 5," what is a,?
Consider the polynomial "5x2 - 3x - 3."

(a) What is ag? (d) What is a,?

(b) Wnat is a,? (e) What is a,, 1 € W and i > 27

i,
(¢) Wnat is a,?

Find the degree of each of the following polynomial functions.

(a) cg (e) c_a

(0) dg (£) [co + c_s)
(¢) [eg + 3 (8) [dg + ig)
(d) e,

If the functions used to generate polynomial functions are
restricted to the identity function and constant functions
of type Cys a € Q, then a subset of the real polynomials,

called polynomials over the rational numbers, is obtained.

For instance,

#x + 5
belongs to the set of polynomials over the rational numbers,
since it is generated by JR’ ci, aad cg, However,

J2x + 5
does not belong to the set of polynomials over the ra-
tionals, sihce CJ; was used in its generation.

Similarly, the set of polynomials over the integers is that

subset of the real polynomials whose elements are generated

by JR and constant functions Cas @ € Z, For instance,
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2x + 5
is a polynomial over the integers, while
#x + 5
is not.
Classify each of the following by making checks in all appro-.
priate columns.

Polynomial Polynomial Real
over Integers over Rationals Polynomial

-2x% + Tx2® - 8

3o o4 s
-X = 1

x2 + Ux + 7
7
5 + 5

5x + %
5% + Jf3
JEx2 + JBx + J16

7.5 Addition of Polynomials: QP,+)
ir
f: X —9x2 + 3x - 2 and
g X=—-5x - 6x + 8 ;
are real polynomial functions, what is [f + g]?
[£ + gl(x) = £(x) + g(x)
= (9x® + 3x - 2) + {-5x - 6x + 8)
=09x2 - 5x2 + 3x - 6x -2 + 8
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=(9 + -5)x% + (3 + -6)x + (-2 + 8)
=L|-X2-3X+6.

Therefore: [f + g]: x — 4x® - 3x + 6,

Example 1, Using the functions above, find f£(3), g&(3),

[f + gl(3).

£(3) =9(3)2 + 3(3) -2 g(3) =-5(3)2 - 6(3) +8
=81+9 -2 =45 -18 +8
= 88 = -55

[f + g)(3) then must be 88 + (-55), or 33,
Using the polynomial found above for [f + gl:

[f +egl(3) =43)2 ~ 3(3) +6
=36 -9 +6
= 33

Since every polynomial function has a unique polynomial asso-

ciated with it, addition of polynomial functions may be expressed
simply by addition of polynomials; for instance:
(2x® + 3x + 7) + (~x2 + 5) = x® + 3x + 12,

Example 2 is another illustration of addition of polyno-
mials, You should be able to interpret it as addition of poly-
nomial functions,

Example 2, (5x2 + 7x? + 8) + (-2x3 -~ 5x® + Tx + 8) =

3x3 + 2x® + Tx + 16,

If we let P denote the set of all real polynomial functions,

is (F,+) an operational system? That is, 1s it true that the

sum of two polynomial functions is a polynomial function? Let
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n n-1
}- an_ix + 00 t+ a, X + ao and
xm-1

m-1
be two polynomial functions., Then we can make the following ob-

f: X —>2a X
g x—b X" +b ¥ aes DX + by
servations about [f + gl:

(1) First, do you see that "ao + bo" will appear in the
associated polynomial?

(2) Also, "a X + by X," or "(a, + by )x" will appear in the
associated polynomial, In other words, the coefficient
of x in the polynomial of [f + g] is simply the sum
of the coefficient of x in the polynomial of f and
the coefficient of x in the polynomial of g.

(3) 1In fact, it is not difficult to see that every power
of x in the polynomial of (f 4 g]_wjll have a coeffi-
cient determined by adding the céefficients of that
power in the polynomials of f and g. For instance, the

coefficient of x® will be (a, + by).

This sort of inforﬁal érgument should make it reasonable to con-
clude that the sum of two polynomial functions is a polynomial
function, Therefore, (P,+) is an operétional system,
| Operational systems are best described by their properties.,
One property of (P,+) is suggested by Examples 3 and 4,
Example 3, 1If f: x-—-—#-éx + 5 is a real function,

then [f + co](x) f(x) + co(x)

(2x+5) +0

2x + 5 = £(x).

therefore, [f + c,] = T,
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Example 4. If g X —— -X7 + #x5 + /3 is a real function,
colx) + g(x)

=0 + (-x” + #x8 ; J3)

= -x7 + x8 + /3 = g(x)

Therefore, [cy + g] = &.

then [c, + g1(x)

The property which the examples illustrate is the identity proper-
ty of (P,+), the polynomial function ¢, being the identity ele-
ment of the system, Also, the polynomial "O" is an identity
element for addition of polynomials. (While there is a distinc-
tion between the polynomial "0" and the real number O, we do not
use different symbols for them; it should always be clear which
one is intended,)

Example 5, (7x* - %x +6) +0="Txs - %x + 6,

Other properties of (P,+) are investigated in the . xercises; no-

tice especially exercises 20, 21, 22, 23, 29.

We make one more observation about addition

of polynomial functions, If deg(p) = n and deg(q) = m, what is
deg([p + ql)? The question is quite easil& answered, and a
specific example should make it clear, Let p and q be as follows:

P! X e x5 + 3x4 +7x3+2x2+8x+3

Q X ——>5x2 +9x + 2
Thus, deg(p) = 5, and deg(q) = 2. Since the polynomial for q
may also be written as "Ox® + Ox* + Ox® + 5x® + 9x + 2," the
polynomial for [p + q] is

(L +0)x5 + (3 + 0)x4 + (7T +0)x3 + {2 + 5)x2 1+ (8 +9)x

+(3 + 2), or x5 + 3x¢ + Tx2 + Tx® + 17x + 5,
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Therefore, deg([p + al)= 5. It could not be greater than.g, since
all coefficients of both polynomials are zero for powers of x great-
er than 5. Thus, it might seem reasonable to assert that deg([p + ql)
= max ( deg(p),deg(q) ). However, this is not always the case.
Suppose p and q are as follows:

pr X —=2x3 + 3x + T

g X —»=-2x2 + 8x - 3
Here, max ( deg(p),deg(q)‘) = max (2,2) = 2, However, deg ([p + al)
= 1, Sometimes, therefore, the degree of the sum of two polyno-
mials is less than the maximum degree of the polynomials being add-
ed, We may however make the'following statement:

deg ([p + ql]) < max ( deg(p),deg(q) ),

provided that neither p nor q nor [p + q] is the function Cye

7.6 Exercises

1, Letf: X —»x® - Tx® + 3x + 4 and

g X —p 2X3 +3x3_7x -4

be two real polynomial functions.'
(a) Find the associated polynomiél for [f + gl.
(b) What is [f + g](2) ?
Check by finding £(2) + g(2). (See Example 1 in Section
7.5.)
(c) Wnat is [f + g)(0) ?
Check by finding £(0) + g(9).
(d) Wnhat is [f + g)(-5) ?
Check by finding f£(-5) + g(-5).
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2, If f(x) = 17x%® - 13x + 22 and g(x) = -13x2 - 1llx - 39, then
[£ + gl(x) =

3, (-7x® -12x2 + 6x + 8) + (~6x® - 1l1x + 9) =

b, (-lbx + 6) + (-16x - 6) =

5. (&x% - %xz +7) + (73—x3 + %x -T) =

6, (Ux® -6x +3) + (-4x® + 6x - 3) =

T (B + 3 - 1) + (B - JBx + B) =

8, (x10 +1) + (x3© - 1) =

9. (.2x* + ,Tx® - Ux) + (.8x% + .,5x2 + x® + ,7) =

10, (5x2 + %x + %) * (%-x2 + %x +.%) =

11, (10x4 + %% + 6) + {-17x4 + 2x* - Tx) =

12, (azx® + g x + ao) + (byx® + byx + bo)
13, Add the polynomials: T7x® - 3x + 5

-2x2 + 4x + 6

14, Add: -13x3 - Tx3 + 5

2x2 + 3x® + Ux + 9

15, Add: 17x* + 3x2 - 6x% + U4x - 10

3x4 + b5x? - T

16, (2x% + 1) + (-2x2 - 1) =

17, (729x? - 16x2® + 42) + (13x2 + 6x - 17) =
18, (_3 1 1 1 1

x4 + 5x° ---%—x3 +1]fx+%) +(gx4 + 5x° -§-x3 +§x+-g)
19, (a) (-3x® + 5x - 9) + (-2x® '=18x + 2) + (-15x® + 22x - 8) =
(b) (43 + 2) + (=Tx® + JB) + (6x5 + 14) = |
(c) (9x® - 1Ux + 3) + (-2x® + 11x + 5)
(d) (-2x® + 11x + 5) + (9x2 - 14x + 3)
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(e) Ada: 3x3 + 1U4x2® - 8x + 6
-2x2 + 15x - 13
Tx3 - 12x3 - 10
8x® - lix - 2
(£; Add the following:

-Tx3 + x + 43 1hx?

8; 9x® - 17; 2U4x® - x® - x - 13
15x2 + 6x2

20, (a) (=3x2 +56x=7T) + (3x® -6x+7) =
(b) (-2x -7) + (2x +7) =
(e) %x-? + g—xz - %) + (--;—x3 - %xz + %—) =
(@) (x® + 1) + (~-x® - 1) =
21, (a) (3x® - 4x + 6) + (-3x® + Ux - 6) =
(b) If f: x —»3x® - Ux + 6 is a real polynomial func-
tion, find a function g such {:hat [f +g] = Cqe
(Remember that c¢, is the identity element for (P,+).
Therefore, we may say g = [-£],the inverse of f.)
22, Let f: x —=#x3 - 3x + 7 be a real function,
(a) Find [-f].
(b) Wnat is [f + [-f]]?

23, Let g&¢ x —»3x% + 14x3 - 35x - 19 be a real function.
(a) Pind [-gl.
(b) What is [g + [-g]]?

2, ~(3x® + 14x® - 35x - 19) = (See Exercise 23)
25, =(=x2 = Tx + 5) = 26, ~(7x¢ - 5x® + 8x® - 14x - 8)=
27, -(17x® - 8x +9) = 28, -(-(-4x® + 9x - 10))

33
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29, (a) Wnat are the properties of a commutative group (S,+)?

(b) 1Is addition of real polynomial functions associative?

(¢) Is (P,+), where P is the set of real polynomial func-
tions and "+" is addition of functions, a commutative
group?

30, (a) Is (Py,+), where P, is the set of polynomial functions
over the integers, a commutative group?

(b) 1Is (PQ,+), where Py is the set of polynomial functions

over the rational numbérs, a commytative group?

(¢) 1Is (Py,+), where Py 1s the set of polynomial functlons

over the natural numbers, a commutative group?

31, Ifff x —3x2 - Tx + 14 and g8 X —> =2x% + 5x - 25
are real polynomial functions, find the polynomial associated
with (f - g].
(Hint: Since (P,+) is a group, £ - g =f + (-g).)
32, (2x2 - Tx® + 15x + 3) - (-4x® + 7x® + 2x - 8)
33, (1.2x% - 3.6x2 - 5,4) - (3.7x% + 1.8x2 -~ 2,6)
34, (%-x2 + %x - %) - (llix2 - Ex - %) =
35. (J2x +3) ~ (-2x - 6) =
36, Subtract: - =2x* + 5x3 - 12x2® - Tx + 2
15x% - 3x3 + 7x® + 5x - 8
37. 5x3 + 14x ~ 18

3x2 - 6x

33, Consider the following real polynomial functions:

f: X == 5x2 - Tx+ 5
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g X = =3x® + Ux - T
h Xe=—— X3 «x2 +x-1

Find the polynomial associated with each of the following

functions:

(a) [f{f +gl-n] (d) [[f - g) - h)
(b) [f+[g-h)] (e) [lg - n) +£]
(¢) [f - (g-hl] (£) [(h-g] +£]

39, For each of the following, give the degree of [f + gl.
If, in any case, it is not possible to determine the degree

with the information given, explain why.

(a) def(f) =5,  deglg) =2
(b) deg(f) =0, deg(g) = 3
(c) deg(f) =6, deg(g) = 6

40, In the inequality dsg ({p + q]) £ max (deg(v), deg(aj), why is
it necessary to require that neither p nor q nor {p + g] be
the function co?

41, What is the subgroup relationship among the groups (P,+),
(P;,0), and (Pg,+)?

7.7 Multiplication of Polynomial Functions: (P,+,°)

Suppose that
f: X =—»x +2
and € X —>=X + 3
are two real polynomial functions., Then
[£.2](x) = £(x) . g(x)
(x +2) « (x+ 3)
(x + 2)x + (x + 2)3

Q 3
EJXU; | x2 +2x +3x + 6
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=x2 + 5x + 6
Thus, the product function [f.g] may be characterized as follows:
(feg): X ———»x2 + 5x + 6,
In the problem considered above, we may say that the product
of the two given polynomial functions 1is a polynomial function;
or the product of the polynomials “"x + 2" and "x + 3" is the poly-
nomial "x® + 5x + 6," Is the product of every two polynomial
functions a polynomial function? Two special cases are discussed
below in order to suggest an answer to this question,
1) Let
r: X ——sgX +a and
S2 X == Dby X + bo
~ be two real polynomial functions of the first degree.
That is, &, 8, by, and bo are real numbers, with a;
and by not zero. Then,
[res)l(x) = r(x) « s(x) =
(ax + a )(byx + b)) = (ax + 2 )(bix) + (a1x + a,)(b,)
(b )x® + (a by )x + (aaby)x + (agby)
(aaby)x® + (a,by + a4b )x + (agb,).

Since all of the coefficlents in the result are real

numbers and a, b, # O (why?) we can say that the product
of two real pclynomials of first degree is a real poly-
nomial of second degree, Also, of course, the product of
two real polynomial functions of first degree is a real

polynomial function of second degree,

2) g X — 8,X® + ay%x® + a,x + a, and

ht X = b3x® + b, X + by
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are two real polynomial functions with a, and b, not zero, Then
[g-h)(x) = g(x).h(x) =

(a,X3 + 8,%2 + a,X + a5)(b%x2 + b, X + by) =

(a,x® + 83X + a,X + a,)(03X%) + (2,X2 + 8,x* + a,x + a,)(b,x) +
(8,%3 + 8;%x® + a,x + a)(b,) =

a,baXx® + agbyxs + a1p3x3 + agbax? + a,b, x4 + ab,x? + a,b,x? +
8gb,X + 8,b X? + a,b X? + a,box + agby =
(2a,b3)x% + (a,b, + aabz)x* + (&b, + ab, + a,by)x? +
(agby + a,b, + agba)x® + (a,by + ayb,)x + (aghy).

Since all of the coefficients in the result are real numbers,
with a,b, # O, we see that the product of a third degree

real polynomial function and a second degree real polynomial func-

tion is a real polynomial function of degree five,

Although the above two particular proofs do not constitute a
general proof, perhaps they do make reasonable the conclusion
that the product of two real polynomials is a real polynomial,
and therefore:

If f and g are real polynomial functions,

then [f-é] is a real polynomial furction,

Furthermore, deg([f-g]) = deg(f) + deg(g), provided that neither
f nor g is the function c,.

Example 1, "#x4 + 3x® - 5" is a polynomial of degree 4,

"x2 + 4" is a polynomial of cegree 2.
(#x+ + 3x2 - 5)(x2 + }) =

(#x* + 3x® - 5)(x2) + (§x¢ + 3x® - 5)(})
Bros 3xs + (-5)x% + Fxs + %2 + (-5)(3)
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#x% + 3x¢ - 5x3 + %k4 + Exa é =

%xg +_.§x4 T .5

Note that the degree of the result is 4 + 2 = 6,

Example 2. (x + 3)(x + 2) = x® + 5x + 6, as discussed earlier,
Sometimes the following “vertical" arrangement
is useful,
x+ 3
x+2
x2 + 3x

+ 2x + 6

X2 + 5x + 6
Example 3, Find the product (-5x3 - x + 6)(x2 - 2),
We must remember that we are actually finding
the product of two functions:
f: X ~»=-5%% - x + 6 and
g X — %X? - 2,
For every x, [f.gl(x) = (-5x2 - x + 6)(x® - 2),
| -5x3 - x + 6

X% - 2

-5x8 - x3 + 6x*2

+10x3 + 2x - 12

-5x5 +9x3 + 6x2 + 2x - 12
With our acceptance of the fact that the product of every two
real polynomials is a real polynomial, (P,+), where P is the set
of real polynomial functions, is an operational system. In Course
IT the assoclative property for multiplication'of func-
tions was indicated. The commutative property can be similarly

ER\(]

iz displayed. Thus for arbitrary functions f, g, h:
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((f-g)*h] = [f:[gh]]

(f.g]=(gf]
That is, multiplication of functions is commutative and associa-
tive; and sinqe polynomial functions are simply a subset of all
real functions, (P,+) certainly possesses these two properties.,
Another property is suggested by Examples 4 and 5 below,

Exomple 4, Let f: x — x + 5 be a real function,
Then [f+c,] (x) = £f(x) * c,(x)

(x +5) «1
x + 5= £(x)

Therefore, [fec,] = £,
Example 5. Let gg¢ x —=x? - 3 be a rzal function,
' Then [c,+g)(x) = ¢,(x) - g(x)
=1 (x® - 3)

x? - 3 = g(x).

Therefore, [c,:g] = &.

Do you see that the constant function ¢, is an identity ele-
ment for (P,+)? That is,

For every f € P, [c,ef]) = [fec,] = £,

Is (P,+) a commutative group? We have already established
associativity, commutativity, and existence of an identity ele-
ment., In order to have a group structure, we must show the exist-
ence of an inverse for each element in P, Let us take for instance
the polynomial function

P: X — X3,
Does this functior. have an inverse in (P,+)? If there is an in-

verse polynomial function -~ call it q -~ then we must have:

[prq} = c,.
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However, this is impossible, p is of degree 2, and ¢, is of degree
0. Therefore, the degree of q -~ call it n -- would heve to be
such that 2 + n = 0, However, there is no polynomial of degree -2,
and therefore we conclude that the polynomial function p has no
inverse in (P,*). Therefore, (P,+) is not a group.

Question, Can you identify some polynomial functions

that do have inverses in (P,+)?

We have now (in this section and in Sections 7.5 and 7.6)
discussed two operations on the set P of real polynomial functions.
We have therefore a two-fold operational system (P,+,.), Let us
summarize all of the properties we have discussed together with
the following property discussed in Course II:

For every f, g, h ¢ P, [fe[g + h]] = [[f+g) + [f-h]]

That is, multiplication distributes over addition,

Let £, g, and h be elements of the set P of real polynomial

functions, Then:

(1) [[£ + &) + h]=(f + [g+ h]] (5) [[f - g] « hl=[f « [g « h]]

4

(2) [e, + £)=[f + ¢ ]= £ (6) [ey + £l=[f .« c1l=¢

(3) (£ + [-e)=ll-t}+ £l=c, (7)) (£ . gl=lg - ]

(4) (£ + gl=[g + £] (8) (£ - [g+ h))=[[f - g] +
[f + h]]

(P,+,+) is not a field, (Which property is missing?) §
Properties (1), (2), (3), (4) yield that (P,+) is a commu- |
tative groub. Properties (7) and (8) imply
(9) ([e + hl-f] = [[g:f] + [he£]]
We can now see that (P,+,°) is a ring with unity, as defined in
Chapter 3, A ring in which multiplication is commutative
‘O (property (7) above) is called a commutative ring. Thus (P,+,°)

is a commutative ring with unity, 1!}() é
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7.8 Exercises

1, Let
fif X =X - 2 and
g xX—x2 +3x+4
be two reél functions
(a) Find the polynomial associated with [f.g].
(b) Find [f.g)(2). Check by finding f£(2).g(2).
(¢) Find [f.£](-3). Check by finding f(-3).g(-3).
(d) Find [f.gl(k). Check by finding f(#)-a(%).

2, (x+2)(x+5)-= 3. (x+2)(x-5)=

4, (x-2)(x+5) = 5. (x-2)(x-5) =

6. (2x +3)(x+7) = 8. (2x2 + x + 1)(x - 8)

9. (x® + Tx +8)(x2 - 3x + 5) = 10, (4x® - 7)(3x® + Tx + 8)
1. (x+PEx - = 12, (Fx + D(Fx - P =

13. (.2x + .5)(.3x - .7) = 1, (2x8 + 5)(x+ - 3x2 + 5)
15. (x7 - 2)(x* + 8) = 16, (x + 7)2 =

17. (x - 8)2 = 18. (3x - 10)2 =

19, (2x + 5)23 = 20, (y + 4)2 =

21, (a - 9)2 = 22, (t +3)? =

23, (x + 2)2 = 2, (t + 16)2 =

25, (x + b)2 = 26, (ax + b)2 =

|
n
(o]

27. (x® + 2x +1)2 = . {(ax® + bx +¢)2 =

29, (y - 4)(y +4) = 30. (x + 6){(x - 6)
31, (t + %‘-)(t -9 - 32, (a + .6)(a - .6) =
33, (2x + 7){(2x - 7) = 3, (3x + 4)(3x - 4) =
35. (6a + 7)(6a - 7) = 36. (3x + B)(gx - B) =
| El{fC‘ 37. (x + JB)(x - ./5) - 38, (3t + JB)(3t - ) =
101
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39. (x + b)(x - b) = ho, (ax + b)(ax - b) =
b1, (x + 2)(x2 - 2x + 4) = 42, (a - 5)(a® + 52 + 25) =
43, (z + 2)(z -~ 3)(22 - 4z + 16) =
W, (n+ 7)(2n + 1)(4n® - 2n + 1) =
45, (a + b)(a® + ab + b2) = U6, (a - b)(a? + ab + b?) =
47, Multiply: 3x8 - 2x5 + 5x% + 3x? - 7Tx® + Tx + 8
10x3 + 6x® - 3x - 5

48, Multiply: ~-5x¥0 + 3x7 - 2x4 -~ 12

X8 - x% -~ 9
b9, ~(3x° - 2x +7) = 50. (-1)(3x® - 2x - 7) =
51, (-1)(-x? + B) = 52, =(~x* +.,5) =
53. (-1)(2x - 7)(3x + 8) =
54, Let

@ X ———x -4

g X —>x% +5x +6

ht X = -x3 + 3
be real functions, Find the polynomial associated with~each
of the following functions,

(a) [[g°h] + £] () [c, - &l (k) [h - h]

(b) [aeh+£]] (g) [-g] (1) [(hen] - (gegl]
() (e, * gl (h) [g+ql (m) [-h]

() [e, * &gl (1) [g+¢c,] (n) [e, °h]

(e) ([t - gl+h] (9 [£. g - nl
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f, g, and h be the following real polynomial functions:
1 X —— x3
g X = X2 4+ 1
h: ¥ = 2x® + X

Find the polynomial associated with fog . ("o" means

composition.)

Find the polynomial associated with JR og.

Find the polynomial associsted with h o JR .

Find the polynomial associated with g o h .

Find the polynomial associated with ho g .

Is (P, o) an operational system?

What is the identity element foir (P, 0)?

If deg(p) = m and deg(q) = n, what is deg(poq)% deg(qop)?

Look in the text at the properties of (P,+,.), which are the

defining properties of a commutative ring with unity. Then

decide which of the following two-fold operational systems

are commutative rings with unity.

(a)
(v)
(c)
(d)
(e)

(Wy+, ) (£) (Zg,+,°)

(Z,+,°) (g) (2 x 2 matrices,+,*)
(Even integers,+,*) (h) any field

(Q,+,+) (1) (N,+,¢)

(Zast,+) |

For the systems in Exercise 58 which are not commutative

rings with unity, state which of the eight defining proper-
ties hold and which do not,

Division of Polynomial Functions

Addition, subtraction, and multiplication are operations on
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the set P of real polynomial functions, We study these operations
in terms of ponlynomials, What about division? How, for instance
can we interpret
(x® + 3x) + x ?
In a multiplicative group (G,¢), any division a + b can be inter-
preted as a * b™*, where b~' is the multiplicative inverse of b.
(For example, in (Q,.), %»+ §v= %-. E;) However, (P,*) is not a
group (see Jection 7.T7), and so such an interpretation here is
without meaning,
We also have interpreted
a+ b
in other multiplicative systems in the followlng way:
a+b=c¢if and only if ¢ « b = a,
This interpretation is a sensible one in the case of the pcly-
nomial division problem above, We may reason as follows:
(x2 + 3x) + x = q(x)
if and only if
a(x) » x = x® + 3x,
The distributive prdperty makes it easy to see that q(x) must be
x + 3. That is,
(x2 + 3x) + x=x+3
since
(x +3) « x=2x2+ 3x
The same division is shown below in a form that will be useful in

some later examples, x + 3

X x3 + 3x
x3 + 3x
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Suppose we alter the above problem slightly, as follows:
(x® + 3x + 2) + x.

There is in fact no polynomial function q such that q(x) . x =
x2 + 3x + 2 for 211 x € R,

This situation is something like that in (W,¢), where not
every whole number divides every other, For example, given
14 + 3, we can say that there is no whole number a such that
a + 5 = 143 thus, 3 does not divide 1%, and 3 is not a factor of
1i4, We do however make use of the following division algorithm:

4L Quotient
Divisor _jL;f-IZ—

12
2 Remainder

Thus, 14 = (4.3) + 2, Recall that in this algorithm, we demand
that the remainder be less than the divisor; in this case, 2 < 3,
A similar algorithm exists for polynomial division, as

illustrated below for (x® + 3x + 2) + x,

x + 3 Quotienf

Divisor _x | x® + 3x + 2
x2 + 3x

2 Remainder
Notice that, for all x € R, x® +3x +2 = ((x +3) * x) + 2,
We cannot say that the remainder, which is the polynomial "2,"

" since we

is less than the divisor, which is the polynomial "x,
have not ordered the polynomial functions, We can however say
that the degree of the polynomial "2" is less than the degree of

the polynomial "x.,"

ERIC 105
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Let f: X = x2 + 8x + 5 and
p! X~ X + 2
be two real polynomial functions.
Find two polynomial functions q and r such that
f ={[q.p] + r]
and

deg(r) < deg(p).

b4
x +2 i x: +8x+ 5 x2 +8x +5=x(x+2) +
x° + 2x (6x + 5)., However, deg(6x
6x + 5 + 5) £ deg (x + 2). So the
process 1is continued,
x + 6
x +2 | x: +8x +5 x2 +8x+ 5= (x+6)(x + 2)
x 7 zx + (-7). And deg(-T) <
6§ 1 ge deg(x + 2),
-7

Thus, the two desired functions are
g X —=x+ 6 and

r: X —— a7,

The preceding example and discussion suggest the following

theorem whose proof is omitted,

Theorem 1.

Giver two real polynomial functions f and p,

P # c,, there exist unique real polynomial funce
tions q and r, with r = ¢ or deg(r) < deg(p),
such that £ = [(p-q) + r].

Thus, for all x ¢ R, f(x) = (p(x)-a(x)) + r(x).
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Notice the word "unique" in the statement of the theorem., This
is a word we have used several times before; it means that it is
not possible tvo find more than one pair of functions, q and r,
meeting the required conditions,

Exemple 2, p: X —»2x2 - §

f1 X = 3x3 - 4x2 + Tx + 10,
Find two real polynomial functions, q and r, with
r = ¢, or deg(r) < deg(p), such that f =

[(Q'p) + I‘].

3
2.7( -~ 2
2x2 - 51 3x® - Ux® + 7x + 10
3x?2 _ _.'I_.2§x
=4 x2 +?;2-x + 10
-lx2 + 10

2x
For all x € R,

3x3 - 4x® + Tx + 10 = (2x® - 5)(-2—:: -2) + (222::).

deg(%gx) = 1; deg(2x® - 5) = 2; thus deg(r) < deg (p).

0
Example 3, x® - 7x+8 | x -~ 5

0

x=-5

Notice that the quotient here is the zero polyno-
mial, and r = f, Clearly deg(x - 5) < deg(x® - Tx

+ 8),
X+ 5
Example 4, x - 3 | x® + 2x - 15
x2 - 3x
5x - 15
" 5x - 15
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Notice here the remainder is the zero poly-
nomial. And we have, for all x € R,
x2 +2x - 15 = (x+ 5)(x - 3) + 0,
Since ¢, is the identity in (P,+), we may
write simply:
x3 +2x - 15 = (x + 5)(x - 3),
Looking at Example 4, we may say that "x - 3" is a factor of
"x2 4+ 2x - 15," We may also say that "x ~ 3" divides "x?® + 2x -

15. "

Definition 3. A polynomial function p divides a polynomial
function f if and only if there exists a poly-
nomial funetion g such that £ = [q-p].

Example 5. Does (x ~ r) divide x¢ - r%, where r ¢ R?

X3 4+ X3y + xr® 4+ rs

X =r | x¢ - T4
x4 = Xx3r
x3r - rt
x3r - x3r3
x3r3 - pé
x2r? - xr3
Xr3 - ré
Xr3 - ré
0

Therefore, x* - r4 = (x® + x®r + xr? + r?)(x - r),
X - r divides x* - r4,
Example 5 in fact suggests a general theorem which may be

stated in the following way:
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Theorem 2., (x - r) divides (x™ - r"), where "x - r" and

nn

X" -

are real polynomials, n € N.

While we shall not give a formal proof of this theorem, it is easy

to give an informal argument based on multiplication. Consider

the product (x - r)(x® ™ + x™°r + 3% &+, . . 4+ x4 2OV,
B T it ol S L
X -1
D T St S T+
Bl o G033 _anes - _on
X - B

rs),

X8 - r5 = (x* + x®r + x®r® + xr?® + r+)(x - r).

Example 6. (x - r) divides (x®

.10 Exercises

-~

l, Let ff X—=—»x?® 4+ Tx + 5 and
PP X =X - 3
be real polynomial functions., Find two real polynomial func-

tions q and r such that £ = [[q-p] + r], and r = ¢, or deg(r)

< deg(p).
iat is deg(p)? What is deg(r)?
2, Let f: x = 3x% - x3 + 5x® - T and
P! X = X2 4+ 2x + 5
be real polynomial functions., Find two real polynomial func-

tions q and r such that £ = [[q-p] + r], and r = ¢, or deg(r)

< deg(p).
What is deg(p)? What is degir)?
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3. Letfi: x —x% + 12 and
Pt X = X? /f
be real polynomial functions. Find two real polynomial func-
tions q and r such that f = [[g:p) + r), and r = ¢, or deg(r)
< deg(p).
In Exercises 4 - 20, find q(x) and r(x) so that for all x ¢ R,

£(x) = (a(x)p(x)) + r(x), and r = ¢, or deg(r) < deg(p).

b, f£(x) = x® p(x) = x

5. f£(x) =x p(x) = x°

6. f(x) =x® -5 p(x) =x ~2

7. f(x) =x® - 8 p(x) =x -2

8, f(x)=x-2 p(x) = x3 - 8

9, f(x) = x% - Tx5 + 14x¢ - 5x® +8x2 - 3x + 5 p(x) =2
10, f(x) =3x® + Tx = 2 p(x) =3x +1

11, f(x) = x® - 6x + 9 p(x) =x -3

12, f(x) = x5 - 3x4 + 8 p(x) = x5 - 3x¢ + 8

13, f(x) = 4x® + Tx ~ 3 p(x)

2x + 3

U, f(x) = 6x® + 5x2 - 8x + U4 p(x) = 3x - 2
15. f(x) = 5x® - 2x5 + 5x% - 17x® + 41x® - 19x - 2
p(x) = x5 + x2 - 3x® + Tx + 1
16, f(x) = 5x® - 2x5 + 5x% ~ 17x® + 41x® - 19x - 2 p(x) = 5x ~ 2

17, f(x) = 4x® + 12x +9 p{x) =2x + 3
18, f(x) = 4x® + 10x +9 p(x) =2x + 3
19, f(x) = 2x¢
20, f£(x)

21, Llet ff X ——sx2 - Tx + 3 and

%;xa + 14x? + 4x - 16 p(x) = 4x® - 7x® + 8

x2 + 27 p(x) =x + 3

PP X=X -2

Q be two real polynomial functions,
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(a) Find polynomial functions q and r, with
< deg(p),such that £ = [[q.p] + r]

(o) Show that f(x) = (q(x)p(x)) + r(x) when

(c) Show that £(x) = (a(x)p(x)) + r(x) when

(a(x)p(x)) + r(x) when

Let f: x —> 2x2 - 5x® - 8x + 14 and

(d) Show that f£(x)

p:r X —»x+5
be two real polynomial functions,
(a) Find polynomial functions q and r, with
< deg(p), such that £ = [[qep] + rl.
(b) Show that f(x) = (a(x)p(x)) + r(x) when
(a(x)p(x)) + r(x) when
(a(x)p(x)) + r(x) when

f: X = x® - 12x% + 38x + 8 and

(¢) Show that f£(x)

(d) Show that f£(x)

p:r X —» x'- 5

are two real polynomial functinns.,

If ¢ X — x® = TXx and r: X ~— 3x + 8,
also,

if @@ X = %2 - 7x+ 3 and r: x —= 23,

r = c, or deg(r)

x =95
X = =2
X =2

x =1,
x =0,
x = =5,

then f = [[qep] + rl.

then £ = [[qep] + r].

Explain why this does not contradict the word "unique" in

Theorem 1,

Recall what is meant by saying that a polynomial p divides a

polynomial £f. (See the definition in Section 7.9). Then

answer "true'" or "false" to each of the following state-

ments concerning real polynomials,
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(a) x2-3 divides x2-3 (n) x-5 divides x2-10x+25
(b) x+6 divides x®+12x+36 (i) x2-10x+25 divides x2-10x2+25x
(¢) x+6 divides x2+12x+30 (J) x-5 divides x2-10x3+25x

(d) =x-2 divides x2-4 (k) x-a divides x3-a2
(e) x+2 divides x®+4 (1) =x+a divides x3+a3
(£) 7 divides x?+4 (m) x--2]-'- divides xa-z]f
(g) O divides x2+4 (n) x+#% divides x2+%

(o) If deg(p) > deg(f), then p does not divide £,
(p) If deg(p)

25. Answer "true" or "false" to the following statements about

deg(f), then p divides f.

the relation "divides" in the set W of whole numbers,
(a) The whole number 1 divides every whole number,

(b) Every whole number except O divides itself,

(¢) If a divides b, then b divides a.

(d) The whole number 5 divides every whole number,

(e) 1If a divides b, and b divides c, then a divides c,

26, Answer "true" or "false" to the following statements about
the relation "divides" in the set P of real polynomial func-
tions.
(a) The function c; divides_évery real polynomial function.
(b) Every real polynomial function except c, divides itself,
(¢) If f divides g, then g divides f.
(d) The function ¢, divides every real polynomial function,
(e) If £ divides g, and g divides h, then f divides h.

27. Show that "x - r," r € R, divides "x® - r3" by finding q(x)

such that q{x)e(x - r) = x* - re,

112




- 109 -

28, Show that "x - r," r ¢ R, divides "x” - r?" by finding q(x)
such that q(x).(x - r) = x7 - »7,
29, From Theorem 2 we know that x - r divides x® - r3, where
r € R, _
(a) If r =2, we have: x =- 2 divides x® - 8
Find q(x) such that q(x)e(x - 2) = x2 - 8,
(b) If r = -2, we have: x + 2 divides x® + 8,
Find q(x) such that q(x).(x + 2) = x2 + 8,
(¢) If r =0, we have: x divides x2,
Find g(x) such that q(x).(x) = x3,
30, PFind, either by the division algorithm or by using Theorem 2,
a(x) such that q(x).(x - r) = B0 - ¥,

7.11 Polynomial Factors and The Factor Theorem

In Chapter 4 of Course II, entitled "Fields,” certain ex-
pressions -- which we may now call real polynomials of degree 2 --
were factored, For instance, the polynomial

x2 + 3x - 10
may be expressed as the product

(x + 5)(x - 2).
This means that for every x € R:

x2 + 3x - 10 = (x + 5)(x - 2).

It also means of course that the real polynomial function

f: X —— x2 + 3x =10
is the product of the following two real polynomial functions:

g X =X 4+ 5

hh X ~—pX = 2
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Factoring can also be used in solving certain eqiations, a
procedure studied in Course II and reviewed in Example 1 below,
Example 1, Solve "x® + 3x - 10 =0.,"
(The domain is to be taken as the set R of real
numbers., )
For every x € R, x? + 3x - 10 = (x + 5)(x - 2).
Therefore,
x2 +3x=-10=0
if and only if
(x +5)(x -2) =0
if and only if
x+5=00rx-2=0
if and only if
Xx==50r x=2,

The solution set is {-5, 2}.

Question, Is it possible to solve the equation
32 + WUx +8 =0
by making use of factoring?

The answer to the qQuestion above depends upon whether or not
we can find useful factors of "3x2® + 14x + 8," We could, for in-
stance, express "3x2 + l4x + 8" as "#(6x® + 28x + 16)." However
this is not useful since solving "&(6x® + 28x + 16) = 0" is no
easier than the original problem, What kinds of factors then are
useful? The original polynomial is a polynomial over the inte-
gers (that is, the coefficients are integers). In such a case

we most frequently want the factors to also be polynomials with
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integral coefficients., In particular, in factoring a second de-
gree polynomial over the integers, we look for factors of form
(ax + b)(ex + d), where a, b, ¢, and d are integers.,
Since factoring is multiplication "in reverse," let us begin
by multiplying
(ax + b)(ex + 4),
where "ax + b" and "cx + 4" are first degree polynomials over
the integers,
(ax + b)(ex + d) = (ax + b)(cx) + (ax + b)(4d)
= (ac)x® + (ad + be)x + (bd).
We may think of the coefficients of this product in terms of two
integers R and S such that:
R = ad
S = be,
Then we have:
R+9S =ad + be (= coefficient of "x")
R« S = (ad)(be)

(ac)(bd) (= produc* of coefficient of
"x2" and the constant term)
Example 2, Find factors of the form
(ax + b)(cx + d) (a, b, ¢, d € 2Z)
for the polynomial 3x2 + 14x + 8,
If there are such factors then there must be two

integers R and S such that

R+8S =14 (coefficient of "x"
ReS =3.8 (product of coeffi-
= 2l cient of "x%" and the

constant term.)
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Since 12 + 2 = 14, and 12 « 2 = 24, there
are two such integers, Let R = 12, S = 2,
Then we have

3x2 + 14x + 8 =3x* + (R+8S)x + 8

3x2 + (12 + 2)x + 8

=3x® + 12x + 2 + 8
= 3x(x +4) + 2(x + 4)
= (3x + 2)(x + 4)
We have therefore "factored" the polyno-
mial "3x2 + 14x + 8,"
Question, In Example 2, would it matter if you let
R=2and S =127 Try it and see!’
Example 2 allows us to answer a question asked earlier, We
may now solve the equation "3x2 + 1llix + 8 = 0" by considering the
equivalent equation "(3x + 2)(x + 4) = 0," The solution set is

easily seen to be {- %3 - 43,

Example 3, Factor "6x® + x - 35,"
If "6x2 + x - 35" is the product of factors of
the form (ax + b)(cx + d), a, b, ¢, d € Z, then
there must be integers R and S such that
R+ S =1 RS = =210,
15 and -14 are two such numbers, Let R = 15 and"-
S = =14, Then
6x2 + x - 35 = 6x2 + (R + S)x - 35
6x2 + (15 + (-14))x - 35
6x2 + 15x - 1l4x - 35
3x(2x + 5) - 7(2x + 5)

(3x -~ 7)(2x + 5).

L}
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fxample 4, Factor "x2® + 2x + 3."

Are there two integers R and S such that:
R+8S=2andR+*S=37?

Since r.o such integers exist, "x® + 2x + 3"

has no factors of form (ax + b)(ex + d), with

a, b, ¢, d € Z, Therefore, "x® + 2x + 3" is

said to be prime over the integers.

It is important to understand in Example 3 that the polyno=
mial "x2® + 2x + 3" is called prime because it does not have factors
of a certain type, A similar situation exists in the set.N of
naturel numbers, We say for instance that the number 5 is prime be-
cause there are no naturel numbers a and b (other than 1 and 5)
such that ab = 5, If we use rational numbers, however, 5 does
have factors -~ for instance, 5 = % « 10,

Does "x2 - 3x2 - 4x + 12" have a factor of form "ax + b,"

a, b € Z? All of the preceding examples have dealt with polyno-
mials of second degree; the present question is about a polyno-
mial of degree three, There is a fairly easy way to answer cer-
tain questions of this kind, See if you cﬁﬁ follow the steps:

Let p be the real function sucih that, for all x ¢ B,

p(x) = x® - 3x® - 4x + 12.
Then p(2) = (2)2 - 3(2)2 - 4(2) + 12
=8-12-8 +12
= 0,
Since p(2) = 0, x - 2 is a factor of x? - 3x® - l4x + 12,
The steps above indicate that x - 2 is a factor of p(x) =
- 3x® - 4x + 12 because p(z) = 0, This is a specific applica-

Aruitoxt provided by Eic:

EKC tion of the following theorem: ] 1,7
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(Factor Theorem)

n n-1
Let pp x —>ax +a X teo . o xta
be a real polynomial function, Then x - r, r € R,

is a factor of p(x) if and only if p(r) = O.

Suppose x - r is a factor of p(x)s that is, x - r
divides p(x). Then there is a polynomial func-
tion q such that

p(x) = (x - r)*a(x) for all x € R,

Then p(r) = (r - r)eqir)
=0 « g(r)
=0

On the other hand, suppose p(r) = 0, Then
p(x) = p(x) - 0
= p(x) - p(x) (SPE)
n-1

n
=(ax +a X = +...taxta)

- (a7 +a "4 e +a)
= a.n(xn -r?) + an_‘(xn" - )
+tooot g (x - 1),
Since x - r divides x© - r, X' . 7,
ete,, we see that x - r divides p(x).
(Theorem 2)
Is x - 3 a factor of p(x) = x® + 2x2 - 9x - 187
Since p(3) = (3)2 + 2(3)2 - 9(3) - 18 = 27 + 18
- 27 - 18 = 0, the answer is "yes," In fact, di-
vision shows that

x2 4+ 2x® = 9x - 18 = (x - 3)(x2® + 5x + 6),

118



- 115 -

And since x® + 5x + 6 = (x + 2)(x + 3), wo can
write finally
x¥® +2x% -9x =18 = (x - 3)(x + 2)(x + 3).

7 .12 Exercises

1, p: x —»x2 + 3x - 28
is a real polynomial function. Find two first degree poly-
nomial functions f and g such that p = [f.gl.

2, @ X = 3x2 + Tx - 20
is a real polynomial function, Find two first degree poly-
nomial functions f and g such that q = [f.g],

In Bxercises 3 -- 15, express each second degree polynomial as

the product of factors (ax + b)(cx + d), a, b, ¢, d ¢ 2, if possi-

ble,

3. x2 - 11x + 24 10, 14x2 + 17x - 6

4, x® + 14x + 33 11, 15x® - Tx - 2

5 x® - Tx -8 12, 4x® + 3x + 2

6. x2 +2x - 35 .....A3, 6x® -585x -50
7. 2x® - 11x - 21 4, 6x2 - Tx - 24

8, U4x® + 17x - 15 15, 9x2 + 25x - 6

9, 5x® + 12x + &4
16, Factor each of the following polynomials.
(a) x® -4 (Hint: x® - 4 =x +0x -4, Here R+ S =0,)

(b) x® - 16 (e) 25y2 - U9
(¢) n2® - 100 (f) x2 - b2
(a) 4x2 -9 (g) a2?x® - b2
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Factor each of the following polynomials.,

(a) x2 + 6x +9 (d) x® - 24x + 144
(b) a2 + 10a + 25 (e) x2 - 2ax + a?
(c) x2 - 8x + 16 (f) x2 + 2ax + a®

Each of the polynomials in Exercise 17 is called a perfect
square polynomial since it may be factored in the form

(x + a)2
Tell what must be added to each of the following polynomials

so that the result is a perfect square polynomial,

(a) x? + 1l4x (d) x® + x
(v) x*® + 18x (e) x® + bx
(e¢) =22 + 5x (£) x® + gx

Decide which'of the following natural numbers are prime,
(a) 14 () 7 (¢) 101 (d) 109 (e) 51
Decide which of the following polynomials are prime (over the

integers).

(a) 5x2 +2x + 1 (a) x2 +9
(b) 16x® - 2x - 3 (e) x® + x
R T _

Tlet pp X —> x3 - 2x2 = x ~ 6

be a real polynomial function.

(a) What is p(3) ?

(v) Does "x - 3" divide "x® - 2x? - x - 6"?

(¢) Find a polynomial function g sueh that for all x € R,
X - 2% - x - 6 = (x-3)ea(x).
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22, Letp: X = -x® - x® - 3x - 10
be a real polynomial function,
(a) What is p(2)?
(v) Does "x - 2" divide "-x® - x® - 3x - 10"?
(¢) Wnat is p(-2)?
(d) Does "x + 2" divide "-x3 - x® - 3x - 10"?
(Hint: x + 2 = x - (-2): the Factor Theorem may be used,)
(e) Find a polynomial functisn q such that for all x € R,
%% - x* = 3x - 10 = (x + 2).q(x).
23, Let pr X — x3 - é-be a real polynomial function,
(a) What is p(%)?
(v) Does "x - %" divide "x3 - %”?
(¢) Find a polynomial function q such that for all x ¢ R,
x? - 5= (x - #)-alx). |
24, Let pr X = x® - Tx2 + Tx + 15 be a real polynomial function,
(a) Show that "x - 5" divides p(x). |
(v) Express p(x) as.the product of three first degree poly-
nomial factors,
~(e) Sketch the--graph of -the polynomizl function p.
25, @ X = =X3 4 Tx® - Tx - 15 is a real polynomial function,
(a) Sketch the graph of q. (Hint: q is the additive in=
. verse of the function p in Exercise 24,)
(v) Express q(x) as the product of three first degree poly-

i
nomial factors.,

-—

eRic | - i
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7.13 Quadratic Functions and Equations

The graph of the function
fi: X—>x?

is one we are already familiar with (see Figure 7.1). We have also

nf Wg
Figure 7.1 Figure 7.2
f: X — X3 g X — 3x®
seen the effect of the real number a in the graph of a function
t: x — ax?,
For instance, the graph of
g X — #x3
appears in Figure 7.2,
Figure 7.3 shows the graph of the function
| n x — #x - 3)3,
uh AW
/
(0,43 N
%(30)13._..;: 1\\-\_-/;;:
' {2
T - (3,-2)
Figure 7.3 : Figure 7.4

o h: x —» 3(x -5'3)2 1!?2 w X — 3x - 3)2 -2
R = " e Eah et e
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Notice that the "size and shape" of the graph of h is the same as
that for g. The two graphs are in fact congruent, Every point
on the graph of h: x — #(x ~ 3)? can be obtained by shifting
a point of the graph of g x ——» 3x® three units to the right.
That is, the graph of i x — ¥(x - 3)2 can be obtained from
the graph of g& x — %x? by a translation of three units to

the right, or more precisely, by the translation T3 0*
3

Figure 6.4 shows the graph of the function

| W X ——3(x - 3)2 + (-2).
It is corgruent to the graph of ht X —»#(x - 3)2 and can be
obtained from it by a translation of two units downward, or more
precisely, by To,-2.
Comparing Figures 7.2, 7.3, and 7.4, we see that translating the
graph of g2 X —%x% by T3’ -p results in the graph of

W x —#(x ~ 3)2 + (-2)

A polynomial function of second degree is called a guadratic
function., The function f: x ——» x2 is the basic quadratic
function., And the graph of a quadratic function

U x-—=>a(x -h)2 +k
can be obtained from the graph of
Vi X — ax?

by the translation Th,k'

Example 1, Draw the graph of the quadratic function
s8¢ x —3(x + 5)2 + 7,
Since 3(x + 5)2 + 7 = 3(x - (=5))2 + 7 for all
X, the graph of the given function can be obtained
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from the graph of r: x — 3x% by T_5 T
3

Both graphs are shown in Figure 7,5,
f

('557)

(0,0}

Figure 7.5

Example 2, What are the zeros of the function
w X —#(x-3)2-22
The graph of this function is shown in Figure 7.4,
and it indicates that there should be two zeros,
They may be found as follows:
#8(x=-3)2-2=0
#(x - 3)2 =2
(x - 3)2 =4
x=3=Forx-3=-/04
X=3=2o0rx-3=-22
Xx=5o0rx=1
Theréfore the zeros of the given function are.
1 and 5.
Example 3. Solve the quadratic equation 2x® + 2x - 1 =0
This is the same as fiﬁding the zeros of the
function

@ X —2%x3® + 2x - 1,
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First we try to write the polynomial in *“he form
a{x - h)? + k,
2x2 + 2x - 1 = 2(x2® + x ) -1
=2(x® +x+3%) -1- &
3
2 . 2
2(x + 3)® - 5.

To find the zeros we proceed as follows:

2ox + 4)? - 3 =0

2(x + 4)° = 3
(x+%)3=13;

x+ %= %% or x + # = - ﬁ%

X

- %+ %; or x = - % - %;

In Example 3, 4+ was added to the expression in parentheses
so that the resulting expression, "x? + x + %," is a perfect
square. (See Exercises 17 and 18 of Section 7,12,) However, we
were really adding %, since the multiplier "2" distributes over
the sum in parentheses, and (2)(%) = #. Therefore, in order not
to change the given function, we also subtracted % The real
sqlutions of any quadratic equation -~ provided they exist -- can
be found by the process (called "completing the square") used in
Example 3,

7.14 Exercises

1, On one set of axes, sketch the graphs of the functions asso-
ciated with the following quadratic polynomials:
(a) x2 (p) -x2 (e) ¥x2 (a) -#x2 (e) 3x2

Ic 9 - 125
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2. On one set of axes, sketch the graphs of the functions asso-
ciated with the following quadratic polynomials:
(a) #x* (p) #x -2)2 (c) ¥x+2)

3. On one set of axes, sketch the graphs of the functions asso-
ciated with the following quadratic polynomials:
(a) %x-2)2 (p) #x-2)2+3 (c) #x-2)*-3

L, Given the graph of f: x-— 5x2, tell which translation
will give the graph of the function associated with each of
the following polynomials:

(2) 5(x+6) +3 (4) 5(x +7)° - 10
(b) 5(x-2)2 +4 (e) sxe + 2
(e) 5(x-#)2 -3 (£) 5(x +2)°

5. Sketch the graph of each of the following functions.
(a) fHiz x=—>(x=3)2+2 (e) fg x —3(x - %)2 - {f
(b) f£a: x—=——>(x=3)2~2 (f) fo2 x—>3(x-4%)2+0
(¢) £, x —2(x + 4)3 +1 (g) f,0 x—>5(x - %)3 - E
(a) f£,: x—>2(x+U4)2 -1

6. Sketch the graphs of the functions associated with the follow-
ing quadratic polynomials, by putting each in the form

a(x - h)? + k,

(See Example 1 of Section 7,13),

(a) x® +5x+ 6 | (f) 2x® +3x+ 7
(b) x® +3x+9 (g) 9x® + 15x - 14
(¢) 2% +9x = 5 (n) 2x® + Bx + 1
(d) 3x® - 5x - 12 (1) x® +3x -1
(e) 2x* + Tx + 3 (§) x® +3x+1

o (k) 3x® + 4x - 2
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(#) ax® + bx + ¢ (where a, b, c are real numbers, a # 0).
(The result of Exercise 6(%£) is to establish that every
quadratic polynomial can he expressed as
a{x - h)® + k.)
T Solve the following quadratic equations if possible,

() x® = x-12=0 (¢) x®+x+1=0
(b) x®2 +x-1=0 (f) 2x®2 +x -3 =0
(e) 7x® +20x -3 =0 (g) 3x* +2x - 5=0
(d) 2x® +x =-1=0 (h) 2x* = 7Tx +3 =0

(1) ax® + bx +c = 0 (where a, b, ¢ are real numoers, a # 0).
(The result of Exercise T(1i) is a formuia, called the
quadratic formula, which can be used to find the real
number solutions of any quadratic equation, provided
they exist.)

8. (a) Sketch a graph of a quadratic function f whose associated
function equation f£(x) = O would have exactly two real
solutions,

{b) Sketch a graph of a quadratic function g whose associated
function equation g(x) = O would have exactly one real
solution,

{c) Sketch a graph of a quadratic function h whose associated

function equation h(x) = O would have no real solutions.

7.15 Rational Functions

5

rn X o X - 1

is a real function provided that the domain does not include the
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number 1, (Why must 1 be excluded?) The greatest possible subset
of the real numbers which may serve a3 domain of this function is
R\{1}. This real function r may be generated by the functions

Cgt X =5

jR: X — X

C i X—>-1

in the following way:

v=leg + [Jg + o] L

)
That is, r(x) = J§f£§,+ c_, (x).

Although the function r above is generated by the identity
function and constant functions, it is not a polynomial function,
since the operation of division of fvnctions is used in the gene-
ration, (Review the definition of polynomial functions, in Section
7.1.) r is, however, z real rational function, (In this chapter,

all real rational functions have codomain R.)

Definition &, is a real rational function.,

J.R
C,o 2 € R, are real rational functions.

Any function generated from one or more of
the above functions, by using no operations
other than addition, multiplication, and

division of functions, is a real rational

function,

" " associated with the function r: x —»

The expression ° —— , =

is called a rational expression,

Example 1, The real function £: x —= £XZ with domain

{x: x € R\ (7}}is a real rational function.

x + 2" is a rational expression,
w7
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The graph of a rational function is not always an unbroken
curve, Shown in Figure 7.6 is the graph of the rational function

discussed earlier:

x=-1
with domain R\ {1}. Note the following points which help in sketch-

ing the graph:

”
“ A

\

Figure T.6
r x—»x—_i-r

(1) The number 1 is not in the domain of r, So th

i
[
I
!
I
I
I
I
I
!
}
I
I
I
|
I
!
I
I
I

(1}

dashed line
"x = 1" has been drawn, The graph cannot intersect this Line.

(2) r(0) = -5, Therefore, the point (0,-5) belongs to the graph.

(3) As |x| becomes very large, r(x) gets "closer and closer" to

zero, For instance:

r(100) = -S—‘—; r(1000) = 59%; r(-100) = 352 ; r(-1000) =
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(4) By taking x close enough to 1, |r(x)| can be made as great as
desired, For instance,

r(1.1) = 5035 r(1,01) = 5003 r(.9) = -50; r(.99) = -500

These four points lead us to conclude that the graph of r
has two asymptotes. The line "x = 1" is a vertical asymptote,
and the iine "y = 0" is a horizontal asymptote. Thue, the graph
of this rational function is not a smooth, unbroken curve, How-
ever, we assume that, except for a break in the neighborhood of
x=1, it is,

The rational function r may also be taken as the quotient
of the two polynomial functions:

p: X — 5 and
g X —»Xx -1,
And this suggests the following alternative definition of a real

rational function,

Definition 5. If p and g are real polynomial functions,.
)22
then [q]
is a real rational function .
r(x) = %%%} for all x € R, except those
for which g(x) = 0. Therefore, the

domain of r does not include zeroes of .

3
Txample 2, t: Xx > ﬁg—i zx_ 15

is a real rational function., It is the
quotient g of the following polynomial

functions:
p: X —» X2 + 5Xx

130 @ X —>x2 - x - 12
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Domain of t = R\ {4,-3% since 4 and -3 are zeros

of q.

0 3
Example 3. Is k& X > 75 With domain R\[-§] a real

rational function?
It is, since it is the quotient of the polyno-
mial functions

Cyt X 0

Q@ x—3+ 2x

Example 4, Sketch the graph of the real rational function

. - 2x + 3
ts X rhrx_5

with domain R\f&]. The line "x = E" is a ver-
tical asymptote., t(0) = - % , and t(- %) =0,
So, the points (0, - %) and (=~ %5 0) are on

the graph, Now, for all x # O,

X
(4 -2) 4.2

Therefore, as p| becomes very large, t(x) gets

t(x)=x(2+-)-3;-)‘ _ 2+ =

"eloser and closer" to 2/4, or 1/2.
The line "y = %" is a horizontal wsymptote (see
Figure 7.7).

1

[

I

|

I
Sl U
\ | > X

| |

|

|

4

];31_ _ Figure 7.7
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T.16 Exercises

1, (a) 1Is every rational number a real number?
(v) 1Is every real number a rational number?
(c) 1Is every rectangle a square?
(d) 1Is every square a rectangle?
(e) Is every polynomial function a rational function?
(f) Is every raticnal function a polynomial function?
2, Identify each of the following as pclynomial function, ra-
tional function, both, or neither, by checking the appro-

priate columns, Specify a domain,

Polynomial ' Rational
Fanc tTon Function
(a) £,: x—3x
2
(b) fat x-—»-i
X
(c) fa: x =2
X + 2
(a) £,: x — =
. X
(e) fg: X —- =17

(f) b x—»,ﬁ
(g) £f,: x —x2
(n) £4: x =—==10
L2\ o . .. N .}

A&} 190

(3) g,t X —»x° + Tx?

(k) X2 -3x+

(1) go: x=—>|x]| + 2
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3. Specify the greatest possible subset of the real numbers

which may serve as domain of each of the following functions,

(a) n,: x—>5-2{- (e) hy: x=——>sx2 +3x+5

(0) hpr x—> (2) het x—> ¥ty

() my x—sx=3 (&) i X— o
(d) by x—>x+5 (0) he: x —= ey

x+ 5
In Exercises 4 -- 12 sketch the graph of the given function,
Be sure to draw asymptotes, and to lccate all points where

the graph intersects the axes, Specify a domain for each

function,
1 1
4. f1 X o X %9, n: x—#;{-s—m
1
5. g X5 lO.p.x-—»xic
6. h: x — 2 11, g X —— X + 3
X X = E
.. 1 . _ X
T ki X—=o73 *¥12, r: x i e
8., m x—»x—g‘g
7 .17 Operations with Real Rational Functions
Let ) i .
f: x—> 3773 (Domain of f = R\({-31)
X
g X X - 5 (Domain of g = R\{5})

be two real rational functions. Then

[£ + gl(x) = £(x) + g(x)

2 X
x+3+x-5
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2 (x -5 x (x+ 3
=x + i ) + ‘*—g(x 3

. __2(x - 5) x(x + 3
T {x+ 3)(x - 5) X + X - 5

_ _2X - 10 + x2 + 3x
(x + 3)(x - 5)

X2 + 5% - 10
X - 2% - 15

This example suggests that the sum of two real rational functions
is a real rational function. Care must be taken about the domain,
however, Since [f + g)(x) = £(x) + g(x), it is obvious that the
domain of [f + g] cannot include numbers that are not in the do-
main of f or not in the domain of g, Thus, in the abcve example,

the largest possible domain for [f + g] is R\({-3,5}.

X -X _ 0
Example 1. T 75 +t3x 53 %x+73°

Notice that for all x # -2,

0

x+z =0

For this reason, we may think of " x " and " .x " as associated
x + 2 X + 2

with inverse functions under addition, And this gives us a way

to interpret subtraction of real rational functiens.

Example 2, _2x + 3 X - 2x + 3 -X

X +4x + 4 T X +2 X +4x + & X T2
2x+3 (x+2
T hx+h + x+2 )

- 2x+3 . _=x3-2x
X=X+

X+ x3 +Ix+Hg

T m e (442

Exa.mgle 3, Let fi X — Eg—f-—lr and

g X :xs I-g;:-l’-l- 1“
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with domain of f = R\{-2,2} and domain of g = R\ {0} be two real
rational functions, Then
(fegl(x) = £(x) - glx)

X x2 4+ Bx - 14
x2 -0 3x%

o (x+ Nx -2)

X
x+20{x - 2) Sex~X

A

!

= _ x(x + 7)(x - 2)
Jexex*(x + 2)(x - 2)

=x{x - 2) ., x_+ %
x(x - x(x +
1l . x + 7
x(x +

= x+ 7T

3x(x +2)

Thus, the product of the two real rational functions is a real

rational function, The greatest possitle subset of R which may
serve as domain in this case is R\ {0,-2,2} since both f(x) and

g(x) must be defined in order for the above development to have

meaning.,

Example 4, x3 +3 , x -2 _ (x® + 3)(x -2
T 2 x2 +3 - (x-2)(xF +

x2 + 3, x =2
X2 +3 X - 2

=1 x # 2,

From Example 4, we see that the two given functions multiply
to give the multiplicative identity function c, (except when x = 2),
For this reason we may consider "x® + 3" and "x - 2 "to be asso-
X - 2 x® +
ciated with inverse functions under multiplication. And this in

QO wrn gives a way to interpret division of real rational functions,
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Example 5.
x2 - g . ¥ 4+ 6x+9 _ x2 -9 ., x2 - 1lx + 30
X2 - bx ° x? - Jix + 30 - %% - 5x X2 + 6X + O
= (x+3)(x-3) , (x-6)(x-
X(x -~ 5) X + 3)(x +
= (x+3)(x-5) . (x-3)(x-6)
{x + 3{x -5 x{(x + 3)
= 1 . (x - 3)(x - 6)
x(x + 3)

= 553 40,56 -3

ﬁotice especially in Example 5 that, even thougn the number
-3 is in the domain of both of the original functions, it is not
in the domainlof the quotient function, The reason for this of

2 o .
course is that we multiply by §57+ éix++930 , and -3 is not in the

domain of this function.

We have now seen that real rational functions -- and their
associated rational expressions -- can be added, subtracted, mul-
tiplied, and divided. At all times however it is important to
specify the domain; we shall usually use the greatest possible
subset of R. (As in the case of rational numbers, division by
the function c, is prohibited)

7 .18 Exercises

1, Each part below consists of two problems, one using rational
numbers and one using rational expressions, Express the result

as & rational number or expression,

2 L 3
(a) 3 t® x+2 T % ? 5
Q- 3 ', 4 x 2x
J;BJK; (b) 35 tooT ¥ -x+2 v 7T Ox T3




o 5 X + 2 X + 5
(c) 37 X -12 ° X -x
3.5 x+2 , x® -1
2. f: X——>xL_':7 (x,‘?)
g: x——»ﬁ-—s (x # =3)
h! X e— x2 (x #°7, -3)
x2 - Ox - 21

are real rational functions, TFind expressions for each of

the following functions; and in each case, state the domain,

(a) [f + g] (e) [h - g]
(b) [f - g] (£) [§)
(e¢) [f - g] (e) (248l
(d) [f +h]
3. (a) Draw the graph cf the real rational function f: x ——-»~% ,

with domain R\ {0},

(b) Explain how the graph of g: x-——a-;%g , With domain R\ {51,
can be obtained by a translation of the graph of f,

(¢) Find a rational expression for [f.g], and state the do-
main of this function,

(d) True or False: For all x € R, = =1,

4, (a} Draw the graph of h: x-—-—.-l% with domain R\ {0}.

|

(b) Explain how the graph of h can be obtained by a reflection
of the graph of £ (in exercise 3),

(¢) Find & rational expression for [f + h], and state the
domain of this function,

(d) True or False: For all x € R,

137
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In Exercises 5 -- 16, add, subtract, multiply, or divide (as in-
dicated) the rational expressions, State all values of the varia-
ble which must be excluded (that is, which are not in the domain

of the associated rational functions),

X - 2 3x ‘s . X
O i, 2+ %
6 2x _ x2 10, %> -8 3
X -2 x¥ - § * 3x+6 ' x-2
w2 . 3 . 2x x - 1
TR B BT Yoz
l <X l -x
8 x-z =+ x-2 W, 3T - w2
X=-2 ., 2-x x+2 x=5 x3+14ngg
9. - T S5 15 %5 g T
X - 2 X = 2 3 - X
0. =553 + x73 15 Ryt s

7.19 Summary

A polynomial function p is a real function such that

p(x) =ax+a ™ +.,..+ QX + a

n n-1
for every x € R, where n € W and a; ¢ R (i =0,...,n), Every

polynomial function may be generated from the identity function
and a finite r.umber of constant functions by using only addition

and multiplicafion of functions,

-1
2+ oa - ¥ 4.+ ;ax + a is a poly-

The expression "a o

n n-1
nomial associated with a polynomial function., Assuming an#O,
the degree of the polynomial is n, ay is the coefficient of xi
(i =0,,..,n), a, is the leading coefficient, and a, is the con-
stant term.

If P denotes the set of real polynomial functions., then (P,+)

~1is a commutative group, (P,+) is an operational system but not a
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group, and (P,+,.) is a commutative ring with unity.

If p and q are not ¢, then deg(lp + q) )< max( deg(p),deg(qa) ),
and deg(p . q) = deg(p) + deg(q).

Given two real polynomial functions ¥ and p, with p # Cor there
exist unique polynomial functions q and r, with r = cj or deg(r)
< deg(p), such that

f = [[p.q] + rl,

A polynomial function of degree two is called a quadratic
function, A quadratic function has at most two real zeros, and
a quadratic equation has at most two real solutions,

The graph of "a(x - h)2 + k" may be obtained from the graph
of "ax?" by the plane translation Th,k'

A guadratic polynomial "ayx® + ayx + ao“ (a5 845 85 € Z) vhich
does not have fectors of type (ax + b)(ex + d), a, b, ¢, 4 & Z, is
said to be prime over the integers.

If p(x) = anxn + an_lxn" +...t ;X + &, thenx - r, r €R,
is a factor of p(x) if and only if p(r) = O, |

A real rational function is the quotient[%lof two real poly-
nomial functions, The domain of a rational function does not in-
clude any number x for which q(x) = 0, The sum of two rational

functions is a rational function as is their difference, product

and quotient.

7 .20 Review Exercises

1, Identify each of the following as a polynomial, a rational

expression, both, or neither,

I ox® + 3 (f) ET;?75
139
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(o) Ix| +3 (g) x® + 4x® - x + JT
(c) K +3 (n) X
) %—x (1) [x]
(e) 336 (3) 5

(=3x2 + 5x + %) + (7x2 + gxa - U4x - %) =
(x2 - 3x + 7)(x - 12) =

(fx° + Tx + 5) = (4x® - 10x + -31-)
(x + 2)(x - ) =

(3x + 7)2 =

(2x = W){3x® + 7) =

(4x® - 8x2 - 10) + (-4x2 + 8x2® + 10)
(4x® - 8x® - 10) - (=4x2 + 8x2® + 10)
(x - 7)° =

For each of the following pairs of polynomials, f and p, find

polynomials q and r, with r = ¢, Or deg(r) < deg(p), such

that £ = [[p-q] + rl.

(a) f(x) =4x2 - 7x + 10, p(x) =2x + 5
(b) f£(x) =x* -8, p(x) =x -2
(¢) f(x) =x® -8, p(x) =x -1

(d) f(x)=x2+2x -3, p(x) =2x = 5

Find factors, if they exist, of the form (ax + b)(ex + d),

a, b, ¢, d € Z, for each of the following polynomials,

(a) 6x2 + 17x - 14 (b) 6x2 +9x - 14 (c) 25x2 - 20x + 4
Write each of the following quadratic polynomials in the form
"2(x - h)2 + k," Then tell how the graph of the associated

function can be obtained from the graph of f: x — 2x2,
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(a) 2x2 + U4x (b)) 2x2 =7 (e) 2x2 + x+ 5 (d) 2x%-3x+8
On the same set of axes, sketch the graphs of the following
functions.,

(a) £: x

> %(X -2)®  (c¢) h: =
> %(x +3)2 +2

> %xe (b) g: x S %(x+3)=

(a) ks x

Find the zeros of the following quadratic functions,
(a) f: x——x%x2 + Tx+12 (c) & X —>x +2x -3
(b) ht x —x2 - 2x + 3 (d) ks x —Ux® - 12x + 9
Solve the following quadratic equations,
(a) x2-7=0 (c) x®+7=0 (e) 2x* - Tx =15
(b) x®+2x-2=0 (d) 3x* =x=0 (f) 2x* = 3x-U4=0
Sketch a graph of the fellowing function:

U x=—>(x - T)(x - 2)(x + 5) for every x € R,
Also, explain why this is a polynomial function,
Sketch the graph of the following real rational functions,

In each case, identify the domain of the function,

. .1 . 1
. 1 . X+ 2
(b) s x""if?’ﬁ (a) f: x-— X - 2
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CHAPTER 8
CIRCULAR FUNCTIONS

There are many physical phenomeria. which are periodic in
nature, during some specified time interval they exhibit some
behavior which they then "repeat" during subsequent time inter-
vals‘(i.e., periodically). Think, for instance, of a pendulum
which moves back and forth during a certain time period, then
retraces 1ts path time and time again. Other examples of
periodic phencmena are: a cork floating in choppy water, a point
on a vibrating violin string, a point on the tip of a vibrating
tuning fork, and a particle of air during passage of a simple
sound wave. Even the beat of the human heart is periodic.

Still another physical expression of periodicity is to be
found in the study of electricity. For instance, the formula

' I= a(sin wt)
where a and w are constants, and t 1s a measure of time, may be
used to find the quantity of electric current, I. But what does
"sin" represent? It is an abbreviation for the sine function,

part of whose grarh appears as Figure 8.1,
y
'--

-a1/ -1 n al

Graph of y:x——-sin x

Figure 8.1
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Do you see that this graph suggests periodicity? None of the
functions studied so far have graphs with this characteristic.
Therefore, in order to study periodic phenomena, new
functions -- called the circular, or trigonometric functions --
are needed, The sine function is Just one of these,
In this chapter we introduce two of the circular functions.

In Course IV we will begin the study of periodicity.

8.1 Sensed Angles

BA and BC, in Figure 8.2 are two rays having the same
endpoint. The ordered pair of rays (ﬁi,ﬁﬁ) is a sensed angle,

in particular censed angle ABC. (Compare this with the defini-

tion of "angle" in Course I.) The same two rays
¢
B -+ —_
A
Figure 8.2

determine another sensed angle -- sensed angle CBA, which is
the ordered pair of rays (BC,BA).
(BK,BC) # (BC,BA).
sensed angle ABC # sensed angle CBA.
Definition 1. A sensed angle is an ordered pair of rays

having the ssme endpoint. The ordered pair
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(BA,BC) is denoted LABC.
Notice that the definition of sensed angle does not demand that
the rays of the palr of rays be non-collinear or even distinct.
(See Exercises 9 and 11 of Section 8.2).
In a sensed angle, the first ray of the ordered pair is
called the initial side of the angle, the second ray the terminal

side.

Example 1. (RS,RT) is a sensed angle. TIts initial side

is RS. Its terminal side is RT.

In Figure 8.3, is there a direct isometry that maps the
initial side of ZﬁDE onto the initial side of ZKBC, and the
terminal side of ZFDE onto the terminal side of ZABC?

(In Course II it is implicit that a transformation is a
direct isometry if it is the composition of an even number of
line reflections; it is an opposite isometry if it is the

composition of an odd number,)

E A

& = &
G . v g bl

D F B c
Figure 8.3

The answer == perhaps surprising ==- is "mo," If you try to map
[JDE onto /ABC, you might first map D onto B by the reflection
R, in p,, the perpendicular bisector of DB (Figure 8.4,) We
suppose A, C, E, F,are so chosen that BA = BC = DF = DE, R,

maps F onto F'! end E onto E',
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Our second mapping is the reflection R, in 4,, the perpendicular
bisector of AF'. R, maps B onto B (why?), F' onto A, and E' onto
E". The composite mapping R,R, is a direct isometry, and it maps
DF onto BA. But R, R, does not map DE onto BC. To map both DF
onto BA and DE onto EE requires a third reflection Ry, in the

perpendicular bisector of CE". Then RyR,R, will map LFDE onto
/ABC. But R,R,R, is not a direct isometry, since it is the

composition of an odd number of line reflections,

Our interest in this chapter will be with sensed angles
that can be mapped onto each other by direct isometries.
Definition 2. /RST is congruent to LABC written ZRST = [ABC
if and only if there is a direct isometry f
such that f(SR) = BA and f(gf) = BC.
In other words, in order for two sensed angles to be congruent,
there must be a direct isometry of the plane that maps initial
side onto initial side and terminal side onto terminal side.
Note that congruence is being used in a different (extended)
way now. That is, congruence Of sensed angles 1s not the same

as congruence of ordinary (unsensed) angles.

Example 2. w M

145 Figure 8.5
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In Figure 8.5 (YW,¥X) = (KM,KG). There is a
translation T such that T(YW) = KM, and T{YX)
= KG. And a translation is a direct isometry.
Notice however that (¥X,YW) # (KM,KG).

8.2 Exercises

1, Name the initial side and the terminal side of the following
sensed angles,
(a) ZDRN  (b) ZCXR  (e) £GLT  (d) ZOEA.

2. Using the figure below, which of the following statements

appear to be true?

(2) (ED,EF) = (HG,HK)
(b)  (5B,5F) = (i, )
(¢c) [Fue 2 e H
(d) [Xue = /DEF K
D F y
-4
3, B E

c F D
(a) Describe an isometry f such that £(BA) = ED, and

£(BC) = EF,
(v) Is ZABC = /DEF?
(c) Describe an isometry g such that g(ED) = BA, and

g(EF) = BC. 146
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/ABC?

R

(d) Is /DEF

(e) Is congruence of sensed angles a symmetric relation?
(Can you think of counterexamples?)
r (T2, TN) = (§ﬁ,§3) is a “rue statement, write two other

related statements which must be true.

G S
(a) Deseribe an isometry f such that £(GK) = GK, and
£(GH) = GH.

(b) Is ZKGH = ZKGH?
(c) 1Is /HOK = LHGK?
(a) Is congruence of sensed angles a reflexive relation?

(e)  1Is [Hok = [HGK?

,Lém;

(a) Describe an isometry f such that f£(BA) = ED, and
£(BC) =

(b)  Is ZABC = /DEF®

(c) Describe an isometry g such that g(ED) = HG, and
g(EF) =

(a) Is /DEF = /GHK?

(e) Describe an isometry h such that h(BA) = HG, and

h(BC) =
147
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(f) Is LABC % LGHK?
(g) Is congruence of sensed angles a transitive relation?
Is congruence of sensed angles an equivalence relation?

(See Exercises 3, 5, and 6 above.)
S

L

LS

M< “P ?

(a) Deseribe an isometry f such that f(SR) = ML and

£(5Q) = MP.

(Hint: Consider a translation followed by a rotation.)
(b) Is LRSQ = ZIMP?
(¢) 1Is ZRSq = ZPML?
Since the definition of sensed angles does not demand non-
collinearity of rays, we have for instance (OA,O0B) as a
sensed angle, where A, 0, and B are collinear points with

O between A and B. Such an angle is called a straight angle.

w

mll
[=1
=4

(a) 1Is (OA,0B) = (0B,0A)?
(b) If your answer is "no," tell why not. If your answer
is "yes," describe a direct isometry f such that

£(OA) = OB, and £(0OB) = OA.
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R

(a) TIs [FDG = [RBN? (If so, describe the direct isometry.)

(b) TIs [FDG

R

ZNBR? (If so, describe the direct isometry.)
11. Since the definition of congruent sensed angies does not
demand distinctness of rays, the ordered pair (OA,0A) is
a sensed angle. Such a sensed angle 1s called a zero angle.
(Recall that an ordered pair of numbers (x,y) permits x
and y to be the same number; for instance, (2,2) is a per-
fectly good ordered pair of numbers. So with an ordered

pair of rays we allow the rays of the palr to be the same

ray. ) A

(AN,AN)? (If so, describe the isometry.)

(a) 1Is (0B,0B)
(b) 1Is (0B,0B) = (X¥,X¥), where XY is any other ray in

the plane?
12, With ruler and compass, carry out the construction of

Figure 8,4,

8.3 Standard Position

The rays of a sensed angle will usually be considered as
subsets 6f the coordinate plane. A sensed angle such as (51,55)
in Figure 8 .6 is gaild to be in standard position.

%Y

Figure .6

EKTC Definition 3. A sensed angle AOB is in standard position
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if and only if OA is .the positive x-axis.

Notice from the definition that it is the initial side of the
angle which 1s the positive x-axis.

Example 1, In Figure 8.7 the sensed angles NOR and AOB

are in standard position. The sensed angles

RON and BOA are not in standard position.

J‘Y aY
X X
~—P - -
0 N & ol &
R
Figure 8.7

Example 2. Figure 8.8 shows ZAOB in standard position,
together with the circle x® + y® = r®, with
center at the origin and radius r. The
"darkened piece of the circle" in the figure
represents an arc of the circle. In particular,
it is the arc intercepted by the rays of the
sensed angle. Physically, this arc might be
thought of as the "path" covered in moving
counterclockwise around the circle from the
initial side of the sensed angle to the termingl
side. ~

A(r;o?

Figure 8.8
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Since the circumference of the circle is
err,
the arc in this case has a length which is %
of 2rr, or
zwr.
This number, the arc length, is denoted by the
symbol "8." We assume that every arc of a circle
has a unique length.
In Figure 8.9 we have ZFOD in standard position, and two
circles:

x2 +y3 =r13

x* +y? =r,° (ry, < ry)
A
(rys0)
: (rz:Q)
F
D

Figure 8.9

The circumference of the larger circle is 27r,, and the circum-

ference of the smaller circle is 27ry.

| arr 2T r r

; = ¢ =B = =R

| atry, 27 T, T,

; In other words, the ratio of the circumferences is the same as

i the ratio of the radii. (If, for instance, the radius of one

circle is twice that of snother circle, then .ts circumference
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is twice as great also.) This same equality of ratios holds
also for arcs of the circles intercepted by the same standard
position angle, Thus in Figure 8.9:
g.a=£a
1
If we want the ratio of arc length to radius, we can write:

0 0
-l = 22 ?
T (Why?)

This suggests the following definition.

Definition 4, 1If AOB is a sensed angle in standard position
and it intercepts an arc of length # (measured
counterclockwise from the initial side) on
a circle x2® + y® = r3,
ther we call s the radian measure of the

r
sensed angle.

Stated informally, to find the radian measure of a standard

position angle, divide the length of the arc it intercepts
by the radius of the circle, Since this ratio will be the
same no matter whet circle is used, we shall most often use
the unit circle
x? +y? =1,
This is a convenient choice since, for the unit circle,
% = % = §., Therefore, the arc length itself 1s the radian
measure of the angle.
Example 3. LAOB, in standard position, intercepts an arc
which is é-of the circle. (See Figure 8.10.)
The circumference of the unit circle is

152
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%-of 72 1is E-.

Therefore, the radian measure of (OA,0B) is E“

xz+y2=l [ 3
0 A
Figure 8.10

The definition of radian measure of a standard position
sensed angle sets up a function

m : SPSA

[0, 2w) ,

where SPSA 1s the set of sensed angles In standard position,

Note that the range of m is {x : 0 { x { 27}, Using function

notation in Example 3, "m(/AOB) = Eu " says that the radian

measure of [AOB is 1&- .

Example 4, In Figure 8,11 (a) /TSR is not in standard

position, However, /TSR & /AOB of Figure 8,11(b).
n/AOB = %-x or = g-.
Therefore, we say that /TSR also has & radian

megsure 12L .

(2) T (b) x3+y?=1

NDAN
R s

Figure 8.11
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Example 4 serves to illustrate
Definition 5. Any sensed angle congruent to /AOB, where
[AOB is in standard position, is assigned

the same radian measure as ZKOB.

8.4 Exercises

1. The accompanying diagram shows a standard position [AOB
which intercepts % of three different circles. The circlés
have radii of 1, 2, and 3. For each of the three circles
compute 8 and %.where A 1s the length of the intercepted

arc, and r is the radius of the circle,

v

N7

2. In each of the following diagrams, estimate as closely as

possible the radian measure of the standard position

e
SPa

sensed angle shown.

(8) 4 (v) (c)

AR
154\J
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(@) (e) (£)

M. D D
VARREN U

(Hint: Assume the circles are unit circles, and estimate

the fraction of the circle which is intercepted by
the sensed angle.)
3. Draw & unit circle. Then draw rays so that OA is the

positive x-axis and:

(2) miAOB = g (b) miRoc = zr
(c) mZROD = Z (d) mfROE =
(e) miAoF = gr (£) miRoe = 3w
(g) mZROH = fr

b, Draw a unit circle., Then draw rays so that OA is the

positive x-axis and:

(a) mZROB = gr (b) miRoc = 3w
(¢) miRoD = &r (d) miAoE = Lr
(e) mZAOF = %qr (f) miROG = g-vr

(g) mZAOH = 2w
5. Recall from Section 8.1 that the ordered pair of rays

(OA,0A) is considered to be a sensed angle.

JTA_.

What is the radian measure of (53,53)? Since we may
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consider this angle to intercept an-arc of zero length, we
say that the radian measure is O.

What is the radian measure of (RS,RS), where RS is any ray
in the plane? Why?

The function m assigns to each standard position sensed angle
exactly one number as its radian measure.

() Are negative numbers used as assignments?

(b) Is O used as an assignment? (See Exercise 5 above.)
(¢) Explain why 27 is not used as an assignment.

(d) Are numbers greater than 27 used as assignments?

(e) What is the range of the function m?

If the domain of the function m is taken as the set of
sensed angles in standard position, is m a one-to-one
function? 1Is any such sensed angle assigned more than
one number? Is any number assigned to more than one such
sensed angle?

The function m : SPSA ————»[0, 27) 1s one-to-one and
onto, Hence there 1s an inverse function

m’l : [0, 27) ~————>SPSA,

Draw & unit circle, Then draw appropriste angles for '
each of the following:

(a) ml(fm) Call 1t 7KOB.
(0) o) cell it ROC.
(¢) mY(3r) Ccall it ZAOD.
(@) nY(r) Call it ZAOE.
(e) m'l(o) Call it by some appropriate name,
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‘(f) n1(1) Call it /AOF, estimating as closely
as possible,
(g) m™(2) Call it ZAOG.

9, Using the diagram at the right,
complete the following. Notice
that the sensed angles are not
in standard position, but each
will have the same measure as a
standard position sensed argle

to which it is congruent.

X
(a) miXOR = ¢
(b) mLROT =

(¢) mXoP =

(d) m/RoN = ’A\I

(e) miSOR =
(£) mZon
(g) miSoP

Be careful) The answer to (a), for example is not g— .

8.5 Circuler Functions of Angles

Certalin important mathematical functions are called circular
functions; they may be defined by use of the unit circle x? + y¥* = 1,

157



Definltion 6,

Figure 8‘12_

Let /AOB be & sensed angle in standard
position, Then S and C are two functions
such that S(/AOB) = y, and

C(ZA0B) = x,
where (X, y) is the point of intersection
of the unit circle end the terminal side of
[AOB, (See Figure 8,12,) The function S is
called the SINE functlon, and the function
C 1s the COSINE function, The domain of the
SINE function and the COSINE function is the

set of all sensed angles in standsrd position,

It 1s important also to consider the range
of each of these functions, (See Exercises
3 and 4 in Section 8,6,)

158



- 155

Example 1, In Figure 8,13
S(ZE0B) = 1, or SINE (iFOB) =
c(ZA0B) = 0, or COSINE (/AOB) =

//’ET»
N
Figure 8,13

Example 2, In Figure 8,14 (%«/‘3, %—) is a point on the
unit circle, (Why?) Thus:
SINE (ZR0B) = % |
COSINE (LAOB)

| Figure 8,14 |
Certaln pairs of sensed angles are said to have the same
sense, while other palrs are sald to have opposite sense, We
shall not attempt a precise definition of these concepts but
shall consider a helpful physical interpretation of them. Look at

these angles, \/
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Z',KBC and L'bEF have the same sense, If one thinks of moving in
a path from A to B to C, the path may be described as counter-
clockwise; similarly, moving from D to E to F is a counter-
clockwise path, On the other hand, ZABC and [I}HK have opposite
sense, Whereas the path from A to B to C is counterclockwise,
the path from G to H to K 1s clockwise,

There is an important relation tetween the SINES of stan-
dard position angles and their senses, To illustrate this, look
at Figure 8,15, 'JOB and ZKOC have the same sense, Also [KOD

and LKOE have the same sense, In fact, any two standard position

Figure 8.15

sensed angles have the same senge if and only if their terminal
sides lie in the same half-plane determined by the x=-axis, On
the other hand, /R0B and /A0D have opposite senses. Any two
stardard position sensed angles have opposite senses if and only
if their terminal sides lie in opposite half=-planes determined
by the x=-axls, Congruent sensed angles (whether or not in stan~
dard position) have the same sense,
Speaking Informelly, then, we can say that two standard
Elil‘cposition sensed angles have the same sense if their terminal

IText Provided by ERIC

sides are both "above the x=-axis" or both "below the x=~axis."
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However in the first case, the SINES are both positive; 1a the
second, the SINES are both negative, Thus we make the following

statement:

Two sensed angles in standard position have
the same sense if and only if their SINES are
both positive, or thelr SINES are both negative,
The relation between congruence of unsensed angles and
congruence of sensed angles can now be stated: ZKBC = ZbEF iff

[ABC = BEF, and /RBC and /DEF have the same sense.

8.6 Exercises

1. Using each of the diagrams below, find SINE(ZKOB), end
COSINE(ZAOB).

(a)

¢} A

Remember that (63,63) is a sensed angle in standard position.
(a) what is SINE({OR,0R))?
(b) What is COSINE((OA,0R))?

3. (a) Explain why the SINE function can never assignla

o number greater than 1 to a sensed angle. (Hint: remem-
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| ber how the SINE function is defined in terms of the
unit cirele.)

(b) Explain why the SINE function can never assign a
aumber less than -1 to a sensed angle.

(c) Assuming that the SINE function assigns every real
nunber between -1 and 1 to some senséd angle, what 1is
the range of the SINE function?

(d) Is SINE : SPSA —» [~1, 1] a one=to-one function?

(a) What is the range of the COSINE function?

(b) Is COSINE : SPSA —» [~1, 1] a one=-to=-one function?

Prove that for every ZEOB in standard position:

[SINE(ZA0B))? + [COSINE(ZAOB)]® =1

(Hint: Use the unit cirecle.)

For each of the followlng standard position sensed angles,

tell whether the SINE function assigns a positive number,

zero, or a negative number.

(a) (b) (e) (¢)

R

| N

Answer the same questions for the COSINE function.
Draw all sensed angles in standard position to which
(a) the SINE function assigns the number 0.

(b) the SINE function assigns the number 1.

Draw all sensed angles in standard position to which
(a) the COSINE function assigns the number O.

(b) the COSINE function assigns the number 1.
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10. Is there a ZAOB such that SINE(ZAOB) = COSINE(/A0B)?
How many are there?
# 11. What number does the SINE function assign to each of the
angles in Exercise 10? (Hint: Use Exercise 5 above. )
12, Draw all sensed angles in standard position such that

COSINE(/AOB) = -SINE(/AOB).

13. Show that (%y%J3) is a point on the unit circle, by using

the equation of the unit circle.
14,

SINE(ZAOB) = %Jé

COSINE(ZAOB) = %

(a) Draw . fAOC (different from ZAOB) such that
SINE(ZRoC) = 3.
(Hint: Use a reflection in the y-axis.)

(b) Draw [ROD (different from LAOB) such that
COSINE(ZEOE) = 3. '
(Hint: Use a line reflection.)

(c) Draw (ROE such that SINE(ZROE) = - /3, and
COSINE(ZACE) = - 3.

15. If (a,b) is the point so labelled on the unit circle,

what are the coordinates of the other points shown?
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16. Draw a picture showing that two standard position angles

do not necessarily have the same sense if their COSINES
are both positive or both negative.

8.7 Circular Functions of Real Numbers

The mapping m assigns a real number o, 0 8 { 27, to
every sensed angle in standard position, Thus the domain of
m is the set SPSA (standard position sensed angles), and the
‘range 1s the set {6 : 0 { 8 { 27}, as indicated below:

SPSA I »{0: 0<a<2r},

Since this mapping 1s one~to=-one and onto, there is an inverse

mapping m-l, represented by
-1

(0:0< o< 2m B spsa
1

Note that the renge of m — 1s SPSA; and we have previously de-

" fined a mapping

spsa —3HE ___3 (¢ : -1 ¢ x (1)
whose domain is SPSA, Therefore these two functions may be
composed as shown below resulting in a new (composite) function,
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m SINE .
(6: 00 <2r) —L—Ppspsa —=2=9% (x: -1 { x {1}

N : A

SINE °m™~ ————
The domain of this composite function is (e : 0 { s < 27}, and

the range is {x : =1 { x {1}, This function is called the sine
(abbreviated "sin") function, to distinguish it from the SINE
function, whose domain 1is SPSA, Thus while the SINE function
assigns a real number to each standard position sensed angle,
the sine function assigns a real number to every real number
between 0 and 2r (not including 2r), The sine function is
formally defined as follows,
Definition 7. The function
sine: (8 : 0 { o < 27}
1s defined by
sine o = SINE (/%op),

{(x: =1 {x<1}

~ Where LC-EBD is the unique standard position
sensed angle with radian measure 9,
Example 1, Suppose LA—53 1s a standard position sensed
angle such that
m( AOB) = g'

Figur: 8.16 165
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Then m-l("a-'-'-) = ﬂOB.A
SINE(7R0B) = 1

(szhE © m ™) () = stne(}) = 2
(See Figure 8,17.)

Figure 8,17
Example 2, (‘-@2—, -2—) is & point on the unit cilrcle,

B
V2 V2
(% 2)
T
T
L o 0] Aﬁ
Figure 8,18

m(RoB) = F
m L (F) = ZRoB

N2
SINE(RoB) = "% ,
Therefore sine % = *g-

o That s, sine (F) = SINE(m™(F) )
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A cosine function 1s defined in a way comparable to that in

which the sine function was defined,
Definition 8, The function
cosine: {e: 0 {o<2r} —»(x: -1 {x (1}
is defined by
cosine g = COSINE(/toD),
Wwhere ZﬁOD is the unique standard position

sensed angle whose radian measure is o,

-1
(a:0g0<2r) —B——ygpsp -COSINE. o (y ; 1 ¢(x 1)
N

cosine

Example 3, Suppose /ADB is a standard position sensed
angle such that

m(/AE) = Z..

Figure 8.19

Then m™2(§) = Zos.,
cos(XoB) = 0

Therefore cos L_ 0.

L-
That 1s, cos = costE(m'l(Z‘,L) ).
Q
[MC (See Figure 8,20,)
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Figure 8,20
_Although the domain of the SINE and COSINE functions has b

been specifed as the set of sensed angles in standard position,
we do not want to restrict ourselves to speaking of the SINE
and COSINE of only those angles which are in standard position,
Acco: 1ingly:
Definition 9. ILet LRST be a sensed angle.
Then SIN(/RST) = SIN(/AOB)
and COS(/RST) = COS(ZAOB)

if and only if
LRST = /AOB, and ZAOB is in standard position.

Example 4. In Figure 8.21 7AOB it

in standard position.

SIN(ZAOB) = 1,

£COD = /AOB. So

SIN(zCoD) = 1.

On the other hand,

SIN(ZDOC) = SIN(ZBOA) = SIN(ZAOE) = -1,

Figure 8.21

ZKOE being a standard position angle,

8.8 Exercises

O

Show that (-%J?, %) is a point on the unit circle.
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Using the diagram, complete statements (a) -- (g).

(a) m(7RoB) =
2

(») m'l(g-qr) = -

(c) sINe(ZZ0B) = (_%Jg,%) N B \
(d) sine 2‘1!‘ = > >
(e) cosInNE(/RoB) - \ /

(f) cosine g-'n- =

Show that (%J? ;s - %‘-«fé ) is a point on the unit circle.
Using the disgram, complete statement (a) -~ (n).

(a) m(ZoB) =

() m~(fw) =

(¢) sin(iXoB) =
(@) sv(m™Y(fr)) =
(e) sin%‘rr =

(£) cos(Ros) =
(6) cos(m™(fw)) =
(n) cos %w =

Use the diagrsm to complete statements (a) and (b),

(a) [sIv°mty(3r) = /.

(b) [COS © m™ ](31r) -

Complete the following:

(a) s8in g = | t[b)' sin g-vr =
(¢) sinwT = (d) sin 0 =
(e) cos %= (f) cos %«rr =

(g) cosw = (h) cos 0 =
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Te FYor each of the following dlagrams, declide which of the
following statements are true:

sin 9 {0; sineg =0, sins9 > O

0; cos 6 > O,

(v)
0 0

AN D
D >

cos 8 { 05 cos 8

(

1

N

() (a)

Y N
\ L/

8. In the dlagrem m(/AOB) = e,, m(ZAOC) = 6, m(AOD) =o,,

o

im(LﬂaE) = §,. ‘Which of the following are true? Which are falsc

(a) sin s,

;];BJ(; (c) sin s,

sin 6, (b) cos 9, = cos 8,

cos 04

sin 9, 1,70 (d) cos f,
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(e) sin s, = sin 9, (f) cos 8, = cos 8,

(g) sin 8, = - sin 0, (h) sin s, = - sin 8,
(L) sin s, = - sin 9, (J) cos 9, = - cos n,
(k) cos 8, = - cos 8,4 (1) cos 8, = - cos 6,

9. Given that /_T\.OB, in the dlagram, intercepts an arc which is
1/6 of the circle, complete statements (a) -- (f).

(a) m(7RoB) =

B(3, 5v3)
(0) m™( ) = jRos f
>

nj

¢

(c) sIne(zRoB) = 0

() sve(n™(%))- &/
(e) sinf=

(£) cos 5=

10. Given that ZAOB, in the diagram, intercepts an arc which is
3/8 of the unit circle, complete statements (a) -- (£).

(a) m(ZRoB) = 1,1,

(v) mn( )= ZKOB( BerR \

(¢) siN(zRoB) = 0 I
(a) sm(m™(Fr)) =

(e) sin %w, =

(£) cos %v =

11, (a) What is the domain of the SINE function?
(b) Is the SINE function one-to-one?
(¢) what is the domain of the sihe function?
(d) Is the sine function one-to-one?
(e) what is the domain of the COSINE function?
(f) 1Is the COSINE function one-to-one?
(g) What is the domain of the cosine function?

\‘1
: th : function one-to-one?
EMC (h) Is e cosine
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8.9 Degree Measure, Radien Measure, and Angle Addition

The protractor was used in Course I as an instrument for
measuring unsensed angles, Such an instrument is based on the
assumption that each unsensed angle is assigned a unique number
called its degree measure, Thus, in Figure 8,22, /ABC has a

measure of 30o (read 30 degrees.)

90
120 60 |
45 /
150 '3
180 | 1
B T

Figure 8.22

Degrees are also used to measure sensed angles. In Figure
. 8.23, /AOB is in standard position. It intercepts an arc of
length gron the unit circle. And so m(A0B) = %% that is, the

é, radian measure of the sensed angle is gm However, ZKOB is a

t
‘ B

N
/

1

Figure 8.23
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right angle, which has a degree measure of 90. Since ZKOB is
in standard position, we assign 90 as the degree measure of [AOB
(but not of /[BOA); and
g radians = 90°

i3 a short way of stating that a sensed angle with degree measure
90 is assigned the number g-if radian measure is used. Similarly,

7 radians = 180°,
and this equality 1s the basis for changing from one unit of

angle measurement to the other, as are the following:

T radians = 180° 7 radians = 180°
_ ¢180,0 T _ 10
1 radien = (-F_) 18 radians =1

Example 1, If a sensed angle has degree measure 105,

what 1s its radlan measure?

180° = 7 radians
o _ T
17 = IBU radians
105° = (105 x Igﬁ) radians

= %E" radlians

Example 2. If m(/R0B) = ’5'-, what is the degree measure of ;X0B?
7 radians = 180°

T _ (1800
-5- radilans = (T)
= 36°

Example 3, Given sin g-= 1. Then since g radians = 90°,
| it follows that sin 90° = 1.
Notice that the domain of the sine function is {x : 0 { x < 27},
We will, when convenlent, replace radian measure by equivglent

degree measure and write sin g = gin 90°, sin g = sin 602 ete.

[}{ﬁ:‘ If m(ZAOB) = %wr, what 1s its degree measure? Figure 8,24

ammrmzgests a simple way of extending the protractor in order to
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find the degree measure of any sensed angle. Tnus, %w radians =
270°,
135
189 0
2&\7 315
¢270

Figure 8.24

90
T~

A5

Note that if a sensed angle in standard'position has its
terminal side in the first quadrant, the angle has degree measure
between O and 90; if in the second quadrant, between 90 and 180;
if in the third quadrant, between 180 and 270; and if in the
fourth quadrant, between 270 and 360,

Example 4., What is the radian measure of a sensed angle

whose degree measure is 3307
1l degree = Igﬁ radians
330°

(330 x Igﬁ) radians

%}w radians.
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We turn now to some principles which will he useful in later
work, In Figure 8,25, ZZOB is a sensed angle intercepting an
arc of length © on the unit circle; thus, m(ZKOB} = # (radians.)

Figure 8.25

ZZbB' is the reflection of ZZOB in the x-axis, It seems reason-
able to assume that LﬂbB' also intercepts an arc of length s =
that 18, to assume that isometries (a line reflection in this
case) preserve arc lengths just as they preserve lengths of seg~
ments., And since the circumference of the circle is 2w, this
means that the arc assoclated with LKbB' has length 27 - @8; that
is, m(LKBBf) =21 - 8, This illustration suggests the general
principle stated below.

If (ROB is a standard position sensed angle with m(LKbB) =,
and LﬂbB' is the reflection of LKbB in the x-axis,
then m(LKbB') =27 - 8,

Of course the principle is applicable also when degree measure
is used, the degree measure of the reflected angle then being

360 - B.
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Example 5., Suppose ZKOB is a standard position sensed

angle with degree measure 225,

Figure 8,26
Let JAOB' be the reflection of ZROB in the
x-axis, Then the degree measure of ZKOB'

is 360 - 225, or 135,
A second principle is closely related to the one above,

Thus, in Figure 8.27, oB' 15 the image of fR0B under reflection

in the x-axis [

|
Figure 8,27
If m(ZROB) = @, then m(ZKOB') = 21 - 8, by the earlier principle,

However, ZﬁOA = ZIOB', since there is a direct isometry (rotation)

mapping initial side onto initial slide and terminal side onto

terminal side. Therefore, since congruent sensed angles are
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assigned the same measure, m(ZBOA) = 27T = o, whereas m(ZKOB) = A,
In other words, if 3 is the measure of a sensed angle, then
2r - n is the measure of the angle obtained by "interchanging"

the inltial and terminal sides,

It ;0B is a sensed angle, and m(zAOB) = o,
then m(7808) = 27 - a.

The principle applies equally well in case degree measure is
used, with 360 replacing 27,
Example 6, Suppose ZKOR ~~ that is, the ordered pair
(5K,5§) == has a degree measure of 120,

Figure 8.28
Then /ROA -- the ordered pair (ﬁ,a)-- has
degree measure 240,

Finally in this section we introduce the concept of angle
addition., By angle addition is meant a binary operation on the
set of sensed angles, Thus Wwe must have a way of assigning a
unique sensed angle to every ordered pair of sensed angles, Thus

let /ABC and /DEF be two sensed angles, (See Figure 8,29(a)). Then
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Figure 8,29
we shall assume the existence of a unigue ray B3 such that
%8G = DEF. (See Figure 8.29(b)). /ARG =-- the ordered palr
(AR, 58) -- is defined to be the sum ZABC + /DEF,
Definition 10, If /ABC and IDEF are two sensed angles,

and /0BG = [DEF, then /ABC + ZDEF = /RBG.

8.10 Exercises

In Exercises 1 =-=- 21, angle measurements are listed., If
the measurement is in ‘radia.ns, wrlte the equivalent degree mea~
surement; if the given measurement is in degrees, write the

equivalent radian measurement,

1, o° 11, 330° 21, d degrees
2, 30° 12, 300°
3, 4s° 13, 270°
4, 60° 14, E'n' radians
5. 90° 15, %‘L-'n' radians
6, T radians 16, %‘JT radians
Te §-1r radians 17, 15°
8. %r radians 18, 2 radians
19, 2°

9. %‘u" radians

o 20, r radians
10, 315
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22, In the accompanying figure,
B! and C' are reflections of

B and C, respectively, in the

x-axis, If m(7R0B) = 55°, and
m( 7Roc) = 200°, determine the
degree messurement of the following
(a) ZRoB!
() ZRoc!
(c) Boa
(a) Zhoa
(e) iBroa
(£) 7%roa
23, Copy.the senséd angles represented

at the right, Then draw v
(a) the angle which is the
sum LﬁST + ZiYZ T
(b) the angle which is the
sum XYz + ZRST.
2lk, What is the sum /ROB + /:KOB 1f jA0B is in standard position
and OF contains:

(2) the positive x-axis
(b) the positive y-axis
(e) the negative x-axis
(d) the negative y-axis
25. If EKOB is any sensed angle, what is [.KOB 4+ zero angle?
zero angle + !XOB?
© ;, 1f 7R0B is any sensed angle, what is ZROB + JBOA?
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8.11 Some Special Angles

The SINE and COSINE of certain angles =-- called '“special
angles" in the title of this section -- arise frequently enough
in applications of the circular functions to merit attention,
Furthermore, determining the SINE and COSINE of these angles
emphasizes some interesting relationships among the circular
functions and some geometric principles studied earlier,

Consider first s right triangle such as that illustrated
in Figure 8,30(a), with an acute angle measuring 60°, and a
hypotenuse of unit length (i.e,, length one), Reflect in line

0. (See Figure 8,30(b).) Then:
A

B C B c- B

(1) B,C, and B'are collinear, since BC | AC, and each of
two perpendicular lines is its own image under
reflection in the other, Thus ABB' is a triangle,
with point C contained in side BB'.

(2) /B! has a degree measurement of 60°, since isometries
of preserve angle measure, -

(3) We now know triangle ABB' is equiangular, (Why?)
Therefore it is equilateral, and BB' = 1, But
BC = CB', since isometries preserve distance, and

180

sO BC='2]"'0
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(4) Using the Pythagorean principle in right triangle ABC,

(AC)* = 12 ~ (5)2 = 1 = £= £, Therefore, AC - 3.

So, in any right triangle having unit hypotenuse and a 60°
angle, the leg "opposite the 60° angle' measures %—J? s and the
other leg measures %‘- Thus, in Figure 8,31(a) [KOB is in
standard position, and has a degree measure of 60, Since

BC = %‘-«/’3 and 0OC = %—, the coordinates of B are (%, él—s/'3) .
And we have o 1

sin 60 = ,-2-/-3

cos 60° = %‘- o

Figure 8.314
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Reflecting in the x-axis (see Figure 8,31(b)), th«: image
of B is B'(%, - %‘-43) o« The degree measure of JOB' is 360 =~
60 = 300°, Consequently,

sin 300° = - %—«/’3
o = -
cos 300~ = 5

Now reflecting in the origin, the image of B!' is
B''(- 3» 3v3). (See Figure 8,31(c)). Also the image of A is
-ty
A'', [A''OB'' has degree measure 300° since it is the imege of
-~ (o]
ROB'. Therefore /B''OA'' has degree measure 360 - 300 = 60°,
And since 7ROB'' + /B''OA'' = ;AOA'' which has degree measure
180, /AOB'' has degree measure 120, Thus,
sin 120° = 243

-l
2

cos 120°

Finelly, reflecting in the x-axis again, the image of B'!
is B! 1 (- J‘., - -21w;/3) . (See Figure 8,31(d).) Since U-\’OB"
has a degree measure of'120°, the degree measure of fA0OB'!'! is

360 - 120 = 240°, Therefore,

sin 240° = - %’-‘\/—3
cos 240° = - %
The results above are summarized in the table below:
60° 120° _  240° 300°
sin V3| A3 | -zv3 | -iv3
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Figure 8,32
In Figure 8,32, /AOB is & standard position sensed angle

with a dgree measure of 30, Since BOC is a right triangle with
hypotenuse of length one, and /0BC is a 60° angle, we know
= %J? , and BC = %. Thus the coordinates of B are (,]2'—'\/'3 ,%-),

and we have:
sin 30° = %.. cos 30° = él-«/B

By reflecting in the x-axls, then in the origin, then again in
the x~axls, the sine and cosine of 330°, 1500, and 210° may
be determined, This is left for the exercises, (See Exercise
1 of Section 8,12,)

Consider next an isosceles right triangle whose hypotenise
in Figure 8,33, with hypotenuse of unit length, ILet a denote
the length of each of the two legs of the triangle, Then,

by the Pythagorean principle,

a® + 82 = 12 1 3
282 = 1
1 = 32 -
Figure 8.33

In effect, in any 1sosce1es right triangle whose hypotenuse 1s

assigned length one; each of the two legs measures §V@ .

Figure 8.34 R
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In Figure 8,34, sAOB is a standard position sensed angle
with degree measure 450. Thus, ABC is an isoceles right tri-
angle whose hypotenuse measures one, By the work above, we

know OC = BC = %JE; as a result, the coordinates of B arz
(2174-2 s %%/'2) + Therefore,

sin 4s° = %@/é
cos 45° = é»fE

From these values, the sine and cosine of 315°, 135°, and
225° can be determined by reflecting in the x-axis, then re-
flecting in the origin, then reflecting again in the x-axis.
Exercise 2 of Section 8,12 is concerned with this,

8,12 Exercises

1, In Section 8,11 it was established that

sin30°=!2“- and cos 30°=-é]=«/'3 .

By reflecting in the x=-axis, then in the origin, - then in
the x=axis, determine the following:

(a) sin 330° (d) cos 150°
(b) cos 330° (e) sin 210°
(¢) sin 150° (£) cos 210°

2. Also in Section 8,11, it was demonstrated that
o_ 1 o_1
sin 45 =-2-/'2 and cos 45 -§~/'2 .
Use these values to determine the following:
(a) sin 315° (a) cos 135°

ERIC (b) cos 315° (e) stn 225°
EEE (c) sin 135° (£) cos 225°
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3. Copy and complete the following table:

sine cosine

120

135°

150°

180°
(o]

210

225°

240°
270°
300
315°
330°

(0]

4, Complete the following:

(a) sin T = (g) sin fr = (m) sin §=
(b) cos T = (h) cos f7 = (n) cos &7
(c) sin ﬁ-w = (1) sinZ= (o) sin %w
(4) cos 27 = (3) cos 2w = (p) cos 2w
(e) singrm = (k) stn 7 =
(£) cos g7 = (1) cos £ =




S5e

v‘T‘.
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For each of the following, give all values of 6 (in degrees)

which make the equation true.

]

(a) sine =7 (b) sino =-%

(¢) sin & = cos @ (d) cos & =-sin 9
For each of the following, gilve all real numbers (which may

be interpreted as radlan measures of angles) which make
the equation true.

() sine =0 (b) cos 8 = %

(¢) sin o =-%Jé (d) (sin 8){(cos 8) =0
Complete the following:

(a) sin 30° =

(b) cos 30° =

(¢) (sin 30°)* + (cos 30°)? =

(da) sin 450 =

(e) cos 45° =
(£) (sin 45°)® + (cos 45°)2
(g) singr =

(h) cos gr =

(1)} (sin gw)a + (cos gqr)a =

Prove the followlng:

(sin 0)® + (cos 8)? =1,

where 9 is the measure of a sensed angle (in either degrees
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or radians.) Refer to the definition of the sine and
cosine functions; see also Exercise 5 of Section8.6.
(Note: (sin a)? 1s written sin™ and (cos 9)? is written
cos®s. In this notation the above equality is:

sin® 6 + cos® 8 =1.)

9, Complete the following:

(a) sin 60° =
(b) sin 30° =
(¢) True or false: sin 60° = 2 sin 30°
(d) sin 90° =

(e) sin 45°
(f) sin 150°
(g) True or false: sin 150° = sin 90° + sin 60°

10, Find a rational approximation of ¥/2, correct to three
decimal places.
Then give a rational approximation for sin 45 and cos 45 s
"correct to three decimal places.

1), Find a rational approximation of ¥3, correect to three
decimal places.
Then give & rational approximation for cos 30° and sin 60°,

correct to three decimal places.
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12, Complete the following table, giving sine -and cosine

assignments correct to three decimal places.

Degree Measure Radian Measure sin o cos 9
of Angle (9) of Angle

188
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8,13 Graphs of Circular Functions

Graphs are often important in the study of circular functions,
just as in the case of polynomial and rational functions in

Chapter 7. Let s be the function with rule s{(x) = sin x,

0 {x<2r. (In earlier sections, "sin #" has been used. However
one variable is as good as another, and so, to be consistent with

earlier graphs in the coordinate plane, the variable "x" is used.)
Table 8.1 1lists some of the values used to plot some points of

this graph in Figure 8,35,

ui‘m
.a'w

sin x o] .50 .71 .87 | 1.001.87 | .71 .50 0

g

J o] ] &

sin x |-.50}{ -.71} -.87 | -1.0| -.87 §-.71| -.50

.. ....Table 8,1 e

ehl
R}
wiR
w4
upl
&lw L
-

ot
§

Figure 8.35
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If the graph of the sine function 1is assumed to be a

smooth curve, then the points may be connected as in Figure 8,16,

i i [
¥ L A

3
Z Fr

Figure 8 .36
Sometimes the graph of the sine function is drawn using

degree measures of angles for x in the rule s(x) = sin x. This

does not change the baslc characteristics of the graph., (See

g0 0> 23St 24”0 Joo*® 5.\6" ?&‘

| — / ;’

Figure 8,37
The exercises in Section 8,14 deal with the graphs of the
sine and cbsine functions and functions obtained from them. As
an ald in sketching these graphs, Table 8.2 listing values for
the sine and cosine functions 1s included at this time. Table

8.2 will also be needed for the exercises in Section 8,16,
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Angle Angle
Measure sine cosine Measure sine cosine
(degrees) (degrees)
1 0.017 1.000 46 0.719 0.695
2 0.035 0.999 L7 0.731 0.682
3 0.052 0.999 48 0.743 0.669
4 0.070 0.998 4g 0.755 0.656
5 0.087 0.996 50 0.766 0.643
6 0.105 0.995 51 0.777 0.629
7 0.122 0.993 52 0.788 0.616
8 0.139 0.990 53 0.799 0.602
9 0.156 0.988 54 0.809 0.588
10 0.174 0.985 55 0.819 c.574
11 0.191 0.982 56 0.829 0.559
12 0.2¢3 0.978 57 0.839 0.545
13 0.225 0.974 58 0.848 0.530
14 0.242 0.970 59 0.857 0.515
15 0.259 0.966 60 0.866 0.500
16 0.276 0.961 61 0.875 0.485
17 0.292 0.956 62 0.883 0.469
18 0.3C9 0.951 63 0.801 0.454
19 0.326 0.946 64 0.899 0.438
20 0.342 0.940 65 0.906 0.423
21 0.358 0.934 66 0.914 0.407
23 0.3901 0.921 68 0.927 0.375
2l 0.407 0.914 69 0.934 0.358
25 0.423 0.906 70 0.940 0.342
26 c.438 0.899 71 0.946 0.326
2 0.454 0.891 72 0.951 0.309
2 0.469 0.883 73 0.956 0.292
29 0.485 0.875 T4 0.961 0.276
30 0.500 0.866 75 0.966 0.259
31 0.515.. .....0.85 76 0. 370 0.242
32 0.530 0.84 77 0.974 0.225
33 0.545 0.839 78 0.978 0.208
34 0.55 0.829 9 0.982 0.191
35 0.57 0.819 0 0.985 0.174
36 0.588 0.809 81 0.988 0.156
3 0.602 0.799 - 82 0.990 0.139
3 0.616 0.788 83 *0.993 0.122
' 39 0.629 0.777 . 84 0.995 . 0.105
4o 0.643 0.766 85 0.996 0.087
i 4 0.656 0.755 86 0.998 0.070
4o 0.669 0.743 87 0.999 0.052
43 0.682 0.731 88 0.999 0.035
Ly 0.695 0.719 89 1.000 : 0.017
U5 0.707 0.707 . .
Table 8.2 .
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8,14 Exercises

1.

From Table 8.2 find the following:

(a) sin 27° (b) ecos 27°
(¢) sin 40° (a) cos 50°
(e) sin 10° (f) cos80°
(g) sin 48° (h) cos 42°

Use Table 8.2 to find sin 130°. (Hint: The figure below,
suggesting a reflection, suggests a way in which "sin 130°"
mey be read from the table, even though "130°" is not
listed there.)

Use Table 8.2 to find the following (see Exercise 2):

(a) cos 130° (b) sin 250°
(e¢) cos 200° (d) sin 290°
(e) cos 290° (f) sin 179°
(g) cos 269° (h) sin 359°

Draw graphs for the following functions on the same set
of axes: * | :

(a) Funcition f sueh that f£(x) = sing x, 0{ x<am.

(v) F‘uncfjtion g such that g(x) = -_si"‘:n x, 0 { x<ar.
What transformation of the plane may be used to relate

these twc:, égraphs?
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Draw graphs of the following functions on the sam: set

of axes.

(a) Function f such that f£(x) = sin x, 0{x<{2w.

(b) Function g such that g(x)

2.sin x, 0 x < 2w,
(¢) Function h such that h(x)

-2-sinx, 0 { x < 2.

(d) Give the range for each of the functions f, g, and h.
Draw graphs of the following functions on the same set of
axes.

(a) £ x

sin x, 0< x< 2.
(b) g x——(sin x) +2, 0¢{ x < 2r.
(¢) n: x (sin x) - 2, 0 x < 2r.

(d) What plane transformation relates the graphs of g
and h?
Draw the -graph of the function ¢ with rule c(x) = cos x,
0 x <o
Draw the graph of the cosine function, using degree measure
of angle on the x-axis.
Draw the graphs of the following functions on the same set

of axes.

() Function f such that f(x) = sin x, 0 { x { 2w,

(b) Function g such that g(x)

cos x, 0 { x < 2r.
(¢) Funetion [f+g] such that [f+g](x) = sin x + cos X,
0 x < 2.

Draw the graphs of the following functions on the same set

- of axes:
(a) f: x-——ecos X, o{x<em
(b) g x——3(cos x), 0<{x< erm.

193



- 190 -

{¢) h: x———-3(cos x), 0 x<er.
(d) k: =x (cos x) +3, ox<eam

#11. Draw the graph of the function f such that f(x) = sin %x,
0 < x < U,

#12, Draw the graph of the function g such that g(x) = cos %x,
0 < x < b,

13. (a) What is sin %w + sin gw?
(v) Explain how the above can be predicted from the graph
of the sine function.
14. (a) what is sin %w,+ sin gw?
(b) Waat is sin 120° + sin 240°?
(¢) Complete the following: sin 170° + sin ______=0.
15. (a) What is cos %w + cos gw?
(v) Explain how the above can be predicted from the graph
of the cosine function.
16. (a) What is cos %w + cos %w?
(b) What is cos 30° + cos 150°7
(¢) Complete the following: cos 43° + cos = 0.

8,15 Law of Cosines and Law of Sines

One of the many applications of circular functions is that
of finding unknown lengths of sides and measures of angles in
a triangle.

Example 1. A surveyor wants to find the distance across a

marsh, from A to B. He can find a point C for
which he can measure directly BC, AC, and /C.
For the data shown in Figure 8,38 find AB (to
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the nearest yard).

B

Figure 8,38

The surveyor begins the solution of the problem

like this:

(AB)? = 100% + 150° - 2{100)(150)(cos 110°).

Why is the surveyor!'s method in Example 1 correct -- or is

it? 1Instead of working with the particular triangle of that
example, look at triangle ACB in Figure 8,39 In this triangle,
let AB=¢, AC = b, and BC = a. (Thus, the side "opposite"
angle C has length ¢, etc.)

.B'

Figure 8,39
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The following conclusions can now be drawn:

(1) The coordinates of A are (b,0). (Remember that b is

(2)

(3)

the length of segment AC.)

Also of course the coordinates of C are (0,0).

If B' is the point at which CB intersects the unit
circle, then the coordinates of B' are (COSINE C,
SINE C).

We shall write these coordinates as (cos C, sin C),
to mean the sine and cosine functions of the measure
of C.

B is the point of intersection of CB with a circle
having center C and radius a. (Remember that a is

the length of segment TB.)

So B is the image of B' under the dilation, with center

(0,0) and scale factor a.

Therefore, the coordinates of B are (a-cos C, a*sin C).

Figure 8,40 shows triangle ACB with the coordinates of all

vertices labeled.

(a cos C,a sin C

B

Gl 0.0) © ~ (b,0)

™ pyma O ha
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Applying the distance formula to segment AB;

¢? = (arcos C - b)? + (a*sin C - 0)®

a?.cos¥C - 2ab.cos C + b? + a?.sin?C

a?(cos?C + sin®C) + b? - 2ab.cos C

a?(1) + b? - 2abecos C

= a® + b? - 2ab-cos C.
It should now be clear why the surveyor's method in Example 1
is correct.
Example 2. Find the length ¢ (where ¢ = AB) in the triangle
in Figure 8,41,

10 &
Figure 8,41

c? = a2 + b3 - 2ab-cos C
10° + 12% - 2(10)(12)-cos 80°
100 + 144 . (240)(.174)
24l - 41,76
= 202.24,
Therefore ¢ =~202,08

= 14,2 (to the nearest tenth).

The formula "¢® = a? + b? - 2ab.cos C" is a form of the

Law of Cosines. The "unknown" side need not be called c¢; it may

O be either a or b (or indeed some other variable). However, the
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"pattern'" of the Law of Cosines remains the same.

Example 3, In triangle ABC (Figure 8.42), m/A = 45° and
m/B = 60°, If BC = a = 10, what is the length

of side AC?
C
b
- 0
A /u5° 60\ B
Figure 8,42

The problem in Example 3 is somewhat like that in Example
1; an "unknown part" of a triangle is to be found. And yet the
problem is different. It cannot easily be solved by using the
Law of Cosines (try it,) The development below results in a

formula which may be used to solve Example 3,
We introduce the coordinate system in three different ways

with respect to the same triangle ABC.

(a cos C,a sin C)

(a)
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C(b cos A, b sin A)

()

(c cos B, ¢ sin B) A

(e)
Figure 8,43

In Figure 8,43(a) the coordinates of B are (a.cos C, a-sin C)
and AC = b, If we let K denote the area of triangle ABC, then
K = %--b-a-sin c.

The triangle ABC in Figure 8,:3(b) is congruent to the
triangle in Figure 8,43(a). Nocw however, the coordinates of A
are (0,0), and the coordinates of C are (b-cos A, besin A). And
AB = ¢. Thereiore,

—1. ee
K= 5 c+besin A.

, Once again, the triangle ABC in Figure 8,43(c) is congruent
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to the other triangles. Now however, the coordinates of B are
(0,0), the coordinates of A are (c-cos B, c¢+sin B), and BC = a.
Therefore,

K = %--a-c-sin B.

These are expressions for the measures of area of congruent
triangles. Since we assign equal measures to areas of congruent

triangles we have:
(v)(a)(sin €) = (c)(b)(sin 4) = 5(a)(c)(sin B).

From %(b)(a)(sin c) = %(c)(b)(sin A), we get

a _ ¢
sinA sin 0 .
From %{c)(b)(sin A) = %(a)(c)(sin B), we get

b _ a
sin B sin & .
Thus, by commutativity and transitivity of equality, we have:

a _ b _ c
Sin X sInB sInC.
This formula is called the Law of Sines. In words, it says that

for a given triangle the ratio of the length of a side to the
sine of the oppcsite angle is the same, regardless of which side
is chosen, This formula may be used to solve the problem in

Example 3, as follows (see Figure 3,42):

b _ a
sIn'B =~ s8in A
b - 10
sIn 600 8in 450
b 10




12.2 (to the nearest tenth).

8,16 Exercises

1.

In a certain triangle ABC, a = 20, b = 10, and m{zC) = 20°,

Use the Law of Coslnes to find c.

(Note: The same notation is being used here as in Section

8,15. That is, AB = ¢, the side opposite /C; BC = a, the

side opposite /A; AC = b, the side opposite /B.)

In triangie ABC, a =5, b = 12, and m(/0) = 90°, Use the Law

of Cosines to find c.

In Section 8,15 the Law of Cosines was given in the form

c? = a® + b® - 2ab(cos C),

in which ¢ is considered as the "unknown side."

(a) Write a form of the Law of Cosines in which a is
considered as the "unknown side.” Thus, the formula
should begin

a? =

(b) Give a form of the Law of Cosines in which b is
treated as the "unknown side."

If the Law of Cosines is used to find the length of a side

of a triangle, what other parts of the triangle must be

known?

In triangle ABC, b = 12, ¢ = 6, and LA has measure 52°,

Use the Law of Cosines to find a.

In triangle ABC, a = 12, ¢ = 6, and /B has measure 128°,

Use the Law of Cosines to find b,
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7. Suppose the Law of Cosines, ¢ = a? + b? - 2ab(cos C), is
applied to a triangle ABC in which 4C has measure 90°.
() What is cos C?

(b) What is the product 2ab(cos C)?
(¢) What already familiar property of a right triangle
results?

8. In triangle ABC, b = 10, ¢ = 12, and LC has measure 60°.
Use the Law of Sines to find the degree measure of (LB.

9. The longer diagonal of a parallelogram is 10 inches long.
At one end the diagonal makes angles of 35° and 250 with
the sides of the parallelogram. Find the lengths of the
sides of the parallelogram. (Hint: Use the Law of Sines.)

/\JSV\\
\3/50/

10. Find the angles of a triangle if its sides measure 3, 4,

and 5.
11, In triangle ABC, /C has measure 90°.
a _ ¢ _a
(a) Use ST X = 5T to show that sin A = 3.
(b) Also use the Law of Sines to show that sin B = 2.
)
c B
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12. Use the result of Exercise 11l(a) to find a in the figure.

13, Use the result of Exercise 11l(b) to find b in the figure.
A

20

14, 1If ABC is a triangle, is it possible to find all the other
sides and angles of the triangle if:
#(a) tA, a, and b are known?
(b) ¢A, /B, and LC are known?
(¢) a, b, and ¢ are known?
(d) ¢A, /B and ¢ are known?
(e} b, a, and LC are known?

8,17 Summary

ZAOB is an ordered pair of rays (OA,OB), with OA called
the initial side, and OB the terminal side: ZEOB is in standard
position 1f OA is the positive x-axis in a plane rectangular
coordinate system.

If LAOB is in standard position and intercepts an arc of

length 8 on the circle x® + y® = r?®, then the real number %-is
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assigned as the radian measure of the angle. In the case of the
unit circle,-% = % = 0,

The function SPSA-—J£—>Ih which assigns to each standard.
position sensed angle its radian measure, has {x ¢ 0 { x < 2r) as range,

Two sensed angles in thie plane are congruent if there is
a direct isometry that maps initial side onto initial side, and
terminal side onto terminal side.

If ZAOB is in standard position, and its termiial side
intersects the unit circle at the point (x,¥), then SINE(ZAOB) =y,
and COSINE(ZAOB) = X. In this way the circular functions SINE
and COSINE are defined, each with the set of standard position
sensed angles as domain and {x: -1 { x { 1) as range.

If SINE(ZAOB) = y, and mZAOB = A, then sin 8 = y. Thus,
sine = [SINE © m™L]

If COSINE(7AOB) = x, and mZAOB = A, then cos # = X. Thus,
cosine = [COSINE © m™1]

In this way, the sine and cosine functions are defined,
each with {x: 0 { x { 27} as domain, and {x: -1 { x { 1) as
range,

Degrees as well as radians may be used to measure sensed
angles. 1w radians = 180°.

If ABC is a triangle, with AB = ¢, AC = b, and BC = a, then
the relation

c® = a? + b? - 2ab-cos C
always holds, and is called the Law of Cosines.

Also, in any triangle ABC, the relation
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a b c

sinA sIinB ~sInC

always holds, and is called the Law of Sines.

8,18 Review Exercises

1. (a) What is the initial side of ZRST?
(b) What is the terminal side of ZRST?

2. Name the two sensed angles determined by CD and CF?

3. Define a sensed angle in standard position.

L, (a) If a standard position sensed angle intercepts an
arc of length E— onn the circle x® + y2 = 4, what is
the radian measure of the sensed angle?

(b) If a standard position sensed angle intercepts an arc
of length 'g- on the unit circle, what is the radian
measure of the sensed angle?

5. Draw the unit circle and sensed angles in standard position

so that the following statements are true:

(a) m(ZAoB) = % (b) m(ZRoc) = F
(¢) m(ZRoD) = ,-3-7 (d) m(ZROE) = i—vr
(e) m(zRoF) = %1:‘ (f) m('EOG) = Z-'tr

6. The terminal side of ZAOB, in standard position, intersects
the unit circle at (%P%?/B)’

(2) What is SINE(ZAOB)?
(b) What is COSINE(ZAOB)?
7. (a) If SINE(ZAOB) = %-, what are the possible veiues of
COSINE(/AOB)?
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(b) If COSINE(ZAOB) = a, what are the possible values of
SINE(ZAOD)?

ZKOB is in standérd position, and intersects the unit circle

at (-”rg-,"/—g-) .

(a) What is STNE(ZAOB)?

{(p) What is the length of the arc wh

g
P
e
(e
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™
>
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ct
Q
H
Q
(¢]
o
ct
ri}

on the unit circle?
(¢c) Wwhat is m(/AOB)?
(d) What is sin %w?

(a) Give the domain and range of the SINE function for
sensed angles 1n standard position,

(b) Give the domain and range of the sine function.

Use the identity sin®¢ + cos?9 = 1 to show that cos o

cannot be greater than 1.

Complete the following:

(a) 30° = radians (b) = radians = °
(e) %w radians = ° (a) %w radians = N
(e) 330° = radians (f) 150° = radians

Complete the followilng:
(a) sin 135° =
(b) cos 315° =
(¢) sin 120° =
(d) cos 210° =

If g-( 5 < 7, then which of the following is true?

(a) sin A > 0 and cos A D O ﬂﬂﬁiS
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“(b) sin o > 0 and cos 9 < O

(¢) sina < 0and cos v <0

(a) sine < O0Oandcosa ) O

In the same set of axes, draw the graphs of two functions

f and g with rules f{x) = 2°sin x and g(x) = 2-cos x, each

with domain {x: 0 { x < 2w}.

Consider the graph of the function s with rule s(x) = sin x,

0 x<e2r.

(a) Does the graph of x have point symmetry? (What is
the image of (0,0)?)

(b) Does the graph of x have line symmetry?

In AABC, ZL has measure 50°, .B has measure 60°, and BC = 4.
(a) What is the degree measure of /0?

(b) Use the Law of Sines to find AB and AC.

In AABC, LA has measure 300, LC has measure 30°, and BC = 10.

() What is the degree measure of (£B?
(b) Use the Law of Sines to find AC and AB.



Chapter 9
INFORMAL SPACE GEOMETRY

9.1 Space Geometry and Plarie Geometry

Although we live in a three-dimensional space, most of
our previous study cf gecmetry was limited to two-dimensional
sets of points, "Lattice Points in the Plane," "Segments,
Angles, and Isometries," "Affine Plane Geometry," "Coordinate
Geomatry," and "Transrormations in the Plane" were all investi-
gations of geometrical figures in a single plane,

This restriction to planar seis of points has two Justi-
fications, PFirst, a wide rang> of practical geometry problems
involve only two-dimensional figures such as parsallel and
perpendicular lines, angles, rectangles, and so on, Second,
many of the properties established for planes and subsets of
planes lead to analogous properties of space and subsets of
space, This chapter generalizes the notions of incidence,
parallelism, perpendicularity, and cocrdinate system to three

dimensions,

9.2 Planes in Space

We think of a plane as being flat, and extending without
boundary, In earlier chapters we studied certain subsets of a
plane (lines, rays, segments, angles, polygons, etc,) These
sets are also subsete i space as are planes themselves,

The surface of a table is often suggested as an illustration

of a plane, A table top is not a plane because it does not
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extend without bound, but it usually is flat, If you place a
straight ruler on such a table in any position whatever, each
point of the ruler will be in contact with the table, If you
perform the same test on a warped table or the surface cf a
corrugated roof, the ruler will not touch the surface at all
points, This carpenter's test for flatness can be formalized
to give a mathematical description of a plane.

Observation 1, A plane is a set of points with the

property that whenever two points are
in the set, the line conteining them is
in the set,
Notice that the 1line joining any two points of the surface
must lie entirely in the surface, Ihis phrasing avoids surfaces

with holes, such as a slice of Swiss cheese (see Figure 9.1),

M~ L0
S
o N\ Q/

Figure 9,1

(Line PQ lies in the surface, but RS does not,)

- endd

U aces that are curved, such as a waste paper basket
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P
<« B ===

(see Figure 9.2), .
]
(]

Figure 9,2

(The 1ine joining P and Q lies on the surface of the basket,
but the line joining P and R does not, The line joining any
two points on the surface must lie in the surface,)

and surfaces that are bounded (see Figure 9,3).

Figure 9.3
(The line PQ extends without bound,)

Activity 1, Materials Needed: one piece of cardboard
(any shape) the size of this book or larger
and three sharpened pencils of the same

length.,
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First, hold a pencil vertically with the pencil point up,
Place the cardboard so that it touches the pencil point, 1In
how many positions can you hold the cardboard? Do the
diftferent positions all represent different planes?

Second, hold two pencils vertically with points up,

Place the cardboard so that it touches both pencil points, In
how many positions can you hold the cardboard? Do the different
positions represent different planes?

Third, hold three pencils vertically with points up,
placing them in a line, and place the cardboard so that it
touches the three pencil points, 1In how many positions can
you place the cardboard? Do the different positions represent
different planes?

Finally, hold three pencils so that they are not in a line
( see Figure 9,4), Hold the cardboard so that it touches the
three pencil points, In how many positions can you place the

cardboard?

Q Figure 9.4
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Now think of the pencil points as mathematical points and
of the cardboard as a plane, Answer the following questions
on the basis of your observations in Activity 1:

(1) How many planes are there that contain one given

point?

(2) How many planes are there that contain two given

points?

(3) How many planes are there that contain three given

points if the points are collinear? if the points
are non-collinear?

Your experience in this activity has probably led you to
conclude that there are many planes that contain any given single
point in space, or any given palir of points in space, or any
given triple of collinear points in space, However, the situation
is different with three given non-collinear points,

Observation 2, Given three non-collinear points there is

one and only one plane that contains them,
A quick glance at your own classroom - whose walls, floor, and
ceiling represent planes - makes one other fact of space obvious,

Observation 3, Not all points lie in the same plane,

As convincing justification for this observation, try to imagine
a single flat surface that contains the points at the (1) front
left bottom, (2) front right bottom, (3) front right top, and
(4) rear right bottom corners of the room!

The exercises that follow present other combinations of

points that may or may not lie in a plane,
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9.3 Exercises

1,

5.

How many planes are there containing

(a) 3 given collinear points?

(b) 4 given collinear points?

(c) a given line?

If two distinct lines intersect in a point, how many planes

are there that contain both iines? Describe a physical

situation that illustrates your answer,

If m is a line and P a point not on m, how many planes are

there that contain P and m? Describe a physical situation

which illustrates your answer,

If m and n are distinct parallel lines, how many planes are

there that contaln both lines? Describe a physicael situa-

tion that illustrates your answer,

Three lines meet in the point determined by the lower right

front corner of your classroom: the lines of intersection

of the front wall and the floor, the right side wall and
the floor, and the front and right side walls,

(a) Is there a plane containing all three lines?

(b) How many planes are there that contain at least two
of these lines?

(c) 1Imagine a diagonesl line running from thelpoint
described above to the upper left rear corner of the
room, Is there a single plane containing all four
lines now under consideration? How many planes are
there that contain at least three of the four lines?

at least two of the four lines?

Pt
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6. Let P, Q, R, S be distinct points, no three of which lie
on the same line,

() For (every, some, no) choice of such points, there
is a plane containing all four points, Describe
physical situations illustrating the answer you
chose.

(b) How many planes are there that contain at least three
of the four points? Does this number depend on the
location of the points? If so, how?

T. If P, Q, R, S are the points determined at the front right
bottom, front right top, front left bottom, and back
right bottom corners of a room,

(a) how many planes are there that contain all four points?

(b) how many planes are there that contain at least three
of the points?

(¢) how many planes are there that contain at least two
of the points?

8. Given two lines m and n is there always & plane that
contains them? Illustrate your answer by describing
appropriate physical situations.

9. 'Three legged stools are very common while two legged
stools are as scarce as hen's teeth., Use the ldeas
discussed in Section 9.2 to explain this phenomenon,

10, Given a four legged table suffering from wobbles because of
uneven legs, what is the minimum number of legs needing

shortening to steady the table?
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11, Describe several physical situations representing two
intersecting planes,

(a) What geometric figure is determined by the set of
points common to the two planes?

(b) If two planes have points P and Q in common, is line
ﬁa'also common to both planes? Do any observations
about the properties of planes justify your answer?

12, Which of the following physical objects can serve as
models of planar surfaces? In each case explain your
answer,

(a) The floor of your classroom,

(b) The roof of the U, N. General Assémbly Building.

(c¢) A basketball.

(d) A bvath sponge (with rectangular faces).

(e) The surface of Lake Placid (on February 1).

9.4 pParallel Lines and Planes in Space

In plane geometry paiallelism is an'important relation
between lines. In what follows we shall use the Greek letter
" to denote a plane., Lines will be denoted by lower case
letters such as "m", "n", etec.

Definition 1, Lines m and n in plane T are parallel 1if

end only if m=normNn-=4@g,
A line is considered parallel to itself, and two lines in a

plane are parallel if they have no points in common,

Q :E]fi




- 212 -

You can probably find many_objects that suggest models

of parallel lines: the lines of notebook paper, railroad tracks,

the lines where ceiling and floor meet a single wall of a room,
and many others, What about the lines formed by a river and

road passing over a bridge of that river? (See Figure g,5,)

Figure 9.5

What about the lines in a room formed where the ceiling and
front wall meet, and where the floor and a side wall meet?

(See Figure 9.6.)

\r______ _*
-———-y

Figure 9.6

Do those lines intersect? Are they parallel? They don't seem

[Jiﬁ:o be related in the same way as parallel lines in a plane,
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As a simple experiment, have a friend hold two pencils
simulating the positions of the lines described in Figures g, g
and 9.6, Ts there a single plane that contains both of these
lines? Use a piece of cardboard and try to fit it along both
pencils. Remember, of course, that the pencils and cardboard
are bounded in size and therefore might lead you to a false
conclusion,

Next try to find a single plane containing {two lines which
are parallel, Experiment with the pencils and cardboard again
and compare your findings with those above when the pencils were
positioned differently,

The preceding experiments should make the following defini-~
tions clear:

Definition 2, (a) If two lines lie in the same plane,

they are called coplanar.

(b) Two lines in space which are not

coplanar are called skew.
Therefore, the pairs of lines described in Figures 9,5 and 9.6
are skew, The existence of skew lines in space emphasizes the
importance of the phrase "in plane 7" in the earlier definition
of parallel lines, Theré are pairs of lines in space that do not
intersect and are not parallel,

Although it is difficult to sketch space figures and relation-
ships on a flat sheet of paper, the following techniques are gen=-

erally used:
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(1) A plane is representied by a parallelogram--with the
understanding that the edges of the parallelogram do
not indicate boundaries of the plane,

- (2) Prarallel lines are usually shouwn in a plane, as in

Figure 9.T.
m
\\
\
ar
Figure O.7

(3) Skew lines are represented as non-intersecting lines,

’

In Figure 9.8 the drawing is intended to show that

line n "passes under" line m,

Figure 9.8

Lines in space are either intersecting, parallel, or skew.
In what ways can a line and a plane be related? If line m inter-

sects plane 7, thls is usually sketched as in Figure 9.9.
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Figure 9.9

Question, What if line m intersects plane ¥ in more than
one point?

Activity 2, What are the possibilities if line m does not inter-
sect plane T? Using a yardstick as 2 model of a line, and a
table top as a model of a plane, place the "line" so that it is
everywhere equidistant from the "plane"; that is, so that each
point on the yeardstick is the same height above the table top.
Next place the yardstick line so that the distance from a point
P on the stick to the table top is greater than the distance
from another point Q on the stick to the table top (but keer the
yardstick from touching the table). You will probably agree
that although in both cases the intersection of the physical
models for the line and the plane are empty, the first case
represents the natural meaning of "a line parallel to a plane,"
In the second situation the line will eventually intersect
the plane because the line and the plane represented actually
extend without bound. The above, and the definition of parallel

lines, suggest the following defirition:
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Defirition 3. Line m is parallel to plane 7 (or 7 is parallel
tom) if eandonly if mis inrormNr =@,

A line parallel to a plane is usually drawn as in Figure 9.10.

A
3|
v

4

Figure 9,10

There is no such thing as a line “skew" to a plane in three-dimen-
sional space sinece any line that is even slightly inclined to a
plane will intersect that plane.

Again using a yardstick as a model of a line, a table top as
a model of a plane, and a pencil point 28 a model of a point not
on the plane, try to hold the yardstick in several different po-
.sitions--each of which represents a line through the pencil point
parallel to the given plane, How many lines are there through a
point P that are parallel to plane w? How would you describe
the figure formed by the lines through P that are parallel to
T2

What possible relationships can exist between two planes
in space? It seems reasonaple to say that two planes intersect
if they have at least one point in commony in fact, if you
look at the examples of intersecting planes around you, it

appears that any two planes that intersect at all must have an

1en’i‘.ire line ir. common,
LS
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Experimenting with pieces of cardboard to represent planes
might lead you to conjecture that some planes have only one

point in common.(see Figure 9,11),

Figure 9.11
but remember that planes extend without bound. (see Figure 9,12).

Observation 4, If two planes have a point in common, they

have a line in common.

Figure 9,12
The definition of parallel lines and the definition of a

line parallel to a plane suggest the following similar definition

for parsllel planes.
Definition 4. Planes m and 7, are parallel if and only

if they are the same plane or m N 1wy = #.

Q Notice that it is impossible to have two disjoint planes
ERIC
'.J.t are not parallel. ' 221
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It is ecasy to find familiar objects that suggest models of
parallel planes: for example, the floor and ceiling of the
classroom, the opposite walls of ths classroom, or the shelves
of a bookcase, Parallel planes are usually drawn as parallel
parallelograms (see Figure 9.13), where again, the edges of the

parallelograms do not represent boundaries of the planes,

Figure 9.13
(The dashed lines indicate the part of m, hidden by 7, .)
Although some objects that suggest planes may appear to be
neither intersecting nor parallel, remember that planes extend
without boun... Thus if two planes are not everywhere equidistant,
they must intersect.

In an earlier experiment you found that if P is a point,

there are an infinite number of lines that contain P and are
parallel to w. The infinite set of lines forms a plane contain.
ing P and parallel to w. This suggests a generalization of the
parallel postulate stated earlier for lines in a single plane;
namely, through a point there is one and only one plane para-
llel to .

If you do some further experimenting with pieces of card-~
board it méy seem that you can find~otper planes through P that

ljRikj do not meet plane T,. (See Figure 9.14,)
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. T

Figure 9.1%

This experimentation, which may lead you to doubt the parallel
postulate for planes in three-dimensional space, illustrates
again the limitations of physical models for geometric objects.
Although the pieces of cardboard used to represent planes are
in some cases very helpful, they have one basic feature that
makes them inadequate---the cardboard models of planes are

bounded and mathematical planes are not. Thus, despite the

fact that "cardboard planes" can be placed to seem neither
parallel nor intersecting, the planes that these pleces of
cardboard represent will meet because they extend without bound.
Observation 5. If P is a point and 7, is a plane, there
is exactly one plane 7, containing P and
parallel to m,.

The following exercises explore many more possible relations

of planes and lines in space.
o '
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9.5 Exercises

In Exercises 1 == 15 determine whether the given statement 1is
true or false. Then describe & physical situation or meke a
drawing that supports your answer. Remember, a true statement
must be true without exception. (In these sentences "4" re-
presents & line, "7" a plane, and "P" a point.)
1. If line %, is parallel to line 4, and line 4, is perallel to
line L3, then £, is parsllel to £,.
Answer (sample): True--For example, the line %; formed where
the ceiling of & room meets the right side well is parsllel to
the 1line %s formed where that wall meets the floor, end the
line %5 formed where the ceiling meets the left side wsall is
also parallel to the line %3 formed where the right side wall

meets the floor. The lines %, &and 43 where the ceiling meets

the right and left side walls are, of course, parallel.

A
-k -
]
if' ?\\ >
Y |
\\\
'43! —

211125 and g, | |2, implies ¢,||s,.

2. If &, ||m end £2||7, then 2£,]|%,.

3. If m|ims end m,||ms, then m|j|m,.

b, If m||t and my| |2, then my||m.

5. If 4 ||m end 25| |7m, then £, end £, are skew.

[]{B:“ If £,]|%2 end %a]]4s, thf:nfl and 4, ere skew.
224
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7. If £||m end m||w,, then L||1fz.
If £, |[%, end 7]|%,, then 7||2,.
9. If 4,||7 end £, skew to £,, then £, intersects .

10. If £,||%, 2nd £, intersects 7 in e single point, then £,
intersects m in 2 single point.

11, If m||m, and £ intersects m in a single point, then £
intersects 7, in a single point.

12. If 7 ||my and 7 Nms = £,, then 7, intersects m, in a line
Lo, with £, |25,

13. If &, ||7 end £, NL, = (P}, then 4;]||w.

li, TFind several physical situations that illustrete each of the
following properties of lines end planes thet were observed
in the preceding section:

(a) Skew lines do not intersect.

(b) A line pearallel to a plane is everywhere equidistant
from the plane.

(c) Two parallel planes sre everywhere equidistant from each
other. .

(d) If P is a point, there are en infinite number of lines
that contain P and ere parsllel to plane .

15. Meke drewings to indicate the following:

(a) Two intersecting lines both parellel to & plene.

(b) Two parallel planes, both intersected by & line.

(e¢) Two intersecting planes,

(d) Two parallel planes intersected by s third plane.
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9.6 Deducfive Approach to Geometry in 3-Space

The explorstory activities of Sections 9.2 and 9.4 have
provided you with some useful notions about points, lines, and
planes in 3-space. You héve observed that:

(observation 1) A plane is a set of points with the property
that whenever two points are in the set, the
line containing them is in the set,

(Observation 2) Given three non-collinear points, there is
one and only one plane that contains them,

(Observation 3) Not all points lie in the same plane,

(Observation 4) If two planes have a point in common, they
have a line l1n common.

(Observation 5) If P is a point and m, 1s a plane, there is
exactly one plane T, containing P and parallel
to 7, .

Accepting these given observations as reasonable descriptions
of reality and remembering those notions about points and liner
in a single plane which you studied in previous courses, you
are in a good position to deduce additional statements about
points, lines and planes in 3-space.

We could refine these observations and state them as
"axioms" for a 3-dimensional affine geometry, We could then
define precisely some of the terms we have used, and proceed

to deduce various statements which we would then call theorems.
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In fact, this is what we did in our study of plane geometry.
However, we do not intend to develop a formal axiomatic
system such as the one studied for 2-space; rather, we want
to demonstrate how logic can be used to bulld on a set of
accepted notions to increase our understanding of geometry,
In a set of exercises which follow this section, you will
have an opportunity to try out your deductive skills,
Example 1. Suppose we have a line m and & point P which
is not in m, How many planes are there that
contain both P and m? (See Figure 9.15.)

.
m
/
T Q
Figure 9.15

Recalling from our study of lines .in a single
plane that a line contains at least two points,
we know that m contalns two points which we
call Q and R, Since P is not in line m, while
Q and R are in m, we recognize that P, Q, and
R are three non-collinear points,

By Observation 2, three non-collinear points
(P, Q and R) are contained in one and only

-
one plane, say T. But Q, R in 7 implies m = QR
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is in 7, by Observation 1. Thus T is a plane
contalning both P and m, Could i here be two
such Planes? Suppose T' is a plane contalning
mand P, Sincemc 7', and Q, R € m, it
follows that @, R € ', and so P, Q, R € 7',
By Observation 2, ™' = 7, We therefore see
that:

A line and a point not in the line

are contained in exactly one plane,
Let m and n be distinet lines which have a
single point of intersection P. (See
Figure 9.16.) How many planes contain both

lines m and n?

’ Figure 9.16

We know that there 1s a second point, call it
Q, on line m. Since P 1s the only point of
m which is also in n, we have line n and a
point Q which is not in n, In Example 1 we
showed that Q and n are contained in exactly

one plane, say T, Since P is inn, P is in 7,
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and by Observation 1, m = %Efis in7m., Thais T
‘is a plane containing m and n, As in Example
l, suppose 7' is a plane containing m and n.
Then 7' contains Q and n (why?), and we
conclude ' = T, or:

Two distinct lines which have a

single point of intersection are

contained in exactly one plane.

Example 3. Let m and n be distinet lines that are
parallel., Definition 1 assures us that there
is a plane that contains m and n. Can there
be another such plane? Try to imitate the
type of reasoning used in Examples 1 and 2
to prove:

If m and n are distinct parallel
lines, then they are conteined

in exactly one plane,

9.7 Exercises

Using the ideas about lines in a single plane studied
in previous courses, your observations made in Section 9.4 and
listed for your convenience in Section 9.6, and the results
of Examples 1-3 in Section 9.6, try to demonstrate that the
following statements follow loglcally. In proving a new

statement, you may make use of any statement already proved.

Diagrams are required.
O
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1. Any pair of distinct parallel lines lie in exéctly one
plane, (See Example 3 of Section 9.6.)
2, 1If a plane intersects one of two parallel planes, then it
intersects the other.,
3. If a plane intersects two parallel planes, then the
intersections are parallel lines.
4, 1If a plane intersects one of two parallel lines in a
point, then it intersects the other line in a point.
5. If a line Jntersects one of two parallel planes in a point,
it intersects the other in a point.
6. If lines £ and m are parallel, then any plane that contains
line £ is parallel to line m,
7. For the set of all planes in 3-space, "is parallel to" is
an equivalence relation.
#8, For the set of all lines in 3-space, "is parallel to" is

an equivalence relation.

9.8 Coordinate Systems in 3-Space

In a previous course, you studied how coordinate systems
could be introduced into affine plane geometry. You may
recall that in order to do this it was necessary to add further
axioms to those for the affine plane. The new axioms served
to introduce the real numbers as coordinates for points on a line.
We will now see how coordinate systems can be introduced
intc space geometry. Our development will be based on our

previous study of plane geometry, and the material in Sections
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9.6 and 9.7. You may be surprised to learn that the axioms
that we used previously for coordinatizing the affine plane
will serve equally well for coordinatizing affine 3-space.

You will recall that a coordinate system for a line 1s an
assignment that matches each point of the line with a unique
real number. The assignment is completely determined by the
choice of two points & and I, O to be assigned coordinate O,

I to be assigned coordinate 1.

A coordinate system for a plane is an assignment that
matches each point of the plane with an ordered pair of real
numbers. The assignment is completely determined by the choice
of three non-collinear points @ I and J, & to be assigned
(0, 0), I to be assigned (1, O), and J to be assigned (0, 1)
(see Figure 9.17 ). The choice of these three points allows us
to assign an ordered pair of real numbers to every point T in
the plane. Lines ® and & are coordinatized (0=>0, I—>1
and 0—=0, J—>1), The coordinates of a point T are deter-
mined by locating T with respect to the coordinatized lines

<> =

0L and QJ.

Figure 9.17
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The existence and uniqueness of coordinates for any point
T in a plane is gueranteed by the parallel postulate: .
(1) There is a unique line through T parallel to 0J (and
it intersects 8? in a point with O,I-coordinate a).
(2) There is a unique line through T parallel to ﬁf'(and
it intersects & in a point with 0,J-coordinate b).
T is assigned coordinates (a,b).

We are now ready o tackle the task of introducing a coor-
dinate system into affine 3-space. We start by choosing four

non-coplariar pcints in space
0, I, J, and K,

no three of which are collinear. Ve know that four such points

exist becanse of Observation 3. We may refer to the quadruple
(0, I, J, K)

a8 the base for a space coordinate system which we are about

to introduce.

Let us call the line OI the x -axis, the line 83 the
Y-axis, and the line 5% the z-axis. Next, let us introduce
a line coordinate system on each of the three axes, using
respectively the bases (¥,I) (9,J) and (0,K). The point O is
therefore a common origin for all three axes (coordinate sys-
tem), and the points I, J, K are respectively unit points for
the Xx~-, the y- and the z-axes. We may diagram our axes as

in Figure 9.18.
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Coordinate
axes in
space

.z ~axls

Figure 9,18

Each pair of coordinate axes determines a unique plane
containing that pair of axes. (Why?) We call each of these
planes a coordinate plane. There are clearly three coordinate
plares. They are conveniently called the xy -plane, the yz-
plane and the Xz -plane. (Which of these three coordinate
planes is depicted in Figure 9,18?)

Let us first consider any point X on the x -axis. This
point will have a unique 2,I-coordinate which we shall call
the x-coordinate of point X. Similarly any point on the y-
axis will have a unique ?,J-coordinate which we shall call the
Y -coordinate of that point. Finally, every point on the z-
axis has a unique O,K-coordinate which we shall refer to as its
z -coordinate.

Now let us consider any point P in space. By pbservation 5
there exists a upique plane m which contaeins the point P and
is parallel to the " yz-plane. We know that the x-axis inter-
sects the Yz-plane in the unique point @¢. It follows

that the x-axls must intersect the pleane. m; in scme unioue

point X. (See Ex, 10, Section 9.7.) This state of affeirs

)
lERj(jdiagrammed in Figure 9,19,
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Determination
of X-coordinate
for point P,

Figure 9,19

The point X has a unique Xx-coordinate namely its 0,I-coordl-
nate as described above. We shall agree to assign this value
to point P. We shall call it the x-coordinate of P. We shall
also assign an y-coordinate and a g-coordinate to point P.
To assign an Yy-coordinate to point P we use Observation 5 once
agaln to obtain a unique plane w, which contains P and is paral-

lel to the xXz-plane., (See Figure 9.20.)
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x-axls

Determination /
of Y-coordinates L
for point P.

Figure 9,20

This plane m; must intersect the y-axis in a unique point Y, (See Ex,
‘10 of Sec. 9.7.) The point Y has a unique xs-coordinate namely
its O;J-coordinate. We assign this value to point P as the
y =coordinate of point P. We leave &t to the studient to
.describe in a similar fashion how we assign a z -coordinate
to point P, (See Exercise 2 in Section 9,9), The three coor-
dinates which are thus assigned to the point P are assembled
into an ordered triple (x, ¥, z), called the coordinate triple
]fRJ(j for poin@ P.
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We have shown above that for each point P in 3-space,
there is & unique cocrdinate triple (x, y, z)., Conversely,
once a coordinate base (0,I,J,K) has been chosen for a space
coordinate system, we can show that for each ordered triple
of real numbers (X%, y, z) there is a unique point P in space
whose coordinates are precisely this oirdered triple. In fact,
there is a unique point X on the X -axis whose G,I-coordinate
1s X, there is a unique point Y on the . y-axis whose ©,J-coor-
‘dinate is ¥ and there is a unique point Z on the 2z-axis whose
0,K-coordinate is 2. By Observation 5 there is a unique Plane
m, which contains point X and is parallel to the yz~-plane.
Similarly there is a unique plane 7, which contains the point
Y and is parallel to the Xz=plane, and there is also a unique
plane Ty which contains the point Z and is parallel to the
~Xy-plane. From the fact that the three coordinate planes have
exactly one point O in common, it can be shown that the planes
Ty, Tys and Ty have exactly one point in common.

Example 1., Consider the plane 7, which is parallel to the
Xy-plane and which contains the point on the
z-axis with coordinates (0, 0, 3). Do you
égree that every point in this plane will have
3 as its z-coordinate? Why? This suggests to
us that a set description of this plane could
be {P(x, y,.z): z = 3}, Figure 9.21 depicts .
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Figure 9.21
From the previously described procedure for assigning
coordinates to point P, coordinates are real numbers, To
simplify the notation in the discussion which follows we will
not include the statement, in our set descriptions, that
X, ¥s 2 €R,
Example 2, What set is described by {(P(x, y, z): z > 3)?
Do you recognize that the set consists of all
points in space which are "on one side" of the
plane described in Example 1, namely the side
which does not contain the origin (point #)2
This set of points ié an example of an open
half..space. Make a diagram selecting a suitable
drawing technique to deplict this open half-space.
Perhaps you have noted that our coordinatization of affine
3-space, and irdeed in our entire discussion in this chapter
up to now, we did not consider perpendicﬁlarity. In the set
of exercises which follows, we will deal with & large variety
of situations which can be investigated without introducing
© ‘rpendlcularity.

ERIC - R
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9.9 Exercises

1. (a) Explain why the y-axis can be described as:
{(P(x, y, z): x=0, z =0}
(b) Using set notation describe the z-axis,
2. Describe how a z-coordinate is assigned to a point P in
space.
3. Describe verbally and sketch the following sets of points:
(a) (P(x, y, z): x=0, y>0, z=0)
-(v) (P(x, y, z): x<0, y=0, z =0}
(¢) (P(x,y,2): x=0,y=0, z>0)
(a) (P(x, y, z): 0<x<y,y=0, z =0}
(e) P(x, ¥, z): y=0]
(£) (P(x, y, z): y > 0}
(¢) (P(x, y, z): y <o)}
(n) {B(x, y, z): y=5]
*(1) (P(x, y, z): 0<y<5)
), Using set notation, describe each of the following sets of
polints:

(a) A1l points in the yz-coordinate plane.
(t) "All points on the negative z-axis.
(¢) All points on a plane parallel to the xy-coordinate
plane and containing the point Z(0, 0, 5).
(d) All points of space that are between the xy-coordinate
plane and the plane described in (e).
5. Let (2, 0, 4) be the coordinate triple for a point A in

Q space, Using set notation, describe a plane which contains

238




A and is:
(a) parallel to the xy-coordinate plane,
(b) parallel to the yz-coordinate plane.
(¢) parallel to the xz-coordinate plane.
6. Sketch and describe in words the following sets of points:
(a) (P(x, ¥y, z): x=14, y =3}
(p) (P(x, v, z): x =2, z =0}
*(c) {(P(x, y, 2z): y=2]}
7. Use set rnotation to describe the following sets of points:
(a) A line in the yz-coordinate plane, parallel to the
z-ax1ls and containing the point (0, 2, 0).
(b) A 1line parallel to the z-axis containing the
point (2, 3, 0).
(¢) A line in the xy-coordinate plane whose y-coordinate
i1s twice its x-coordinate.
#(d) A plane containing the z-axis and also containing
the point P(2, 6, 0). Sketch this plane,

#8, Sketch and describe in words the set of points:

(P(x, y, 2): 0<x<% 0<y<3, 0<z<2),
: ., z-axis

9. One vertex of a tetrahedron
(triangular pyramid) is
chosen as the origin 0, snd
and the other three vertices
A,B,C are chosen as the unit
points for a space coordinate

system as indicated in the

239
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(a) Write a coordinate triple for each of the vertices
O,A,B,Co
(b) 1If L,M,N,P,Q,R are midpoints of the edges as

indicated, express each of these midpoints as a coor-
dinate triple. (Hint: Use two-dimensional coordinates
within each coordinate plane, noting that the remeining

coordinate is zero in each case.)

9.10 Perpendicularity of Lines and Planes in Space

We have seen that 1f we choose two lines in space there
are three possibilities: they may be parallel, they may intersect,
or they may be skew. On the other hand if we choose two planes,
or if we choose a line and a plane, then there are only two possi-
bilities: <they may either be parallel or they may intersect. The
reason for this is that the word "parallel" applied to two lines
does not mean the same thing as it does when applied to two planes
or to a line and a plane. (In the case of two lines, parallelism
includes an extra regquirement, namely that the lines be coplanar.)

Similarly, the word "perpendicular" which thus far applies to
two lines, must be glven a modified meaning when applied to two
planes or to a line and a plane. The activities described in
this section should help you get a clear picture of the various

meanings for the word "perpendicular" in 3-space.

O
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Activity 3. Materials needed: sharp pencils, unlined paper,
ruler, and one assistant.

Mark a point P on the paper and draw one line ¢, through
P. Place the point of the pencil on P and hold the pencil so
that it is perpendicular to the line 2,. Hold the pencil in
a different position keeping it perpendicular to the line £,.
What conjecture does this activity suggest concerning the num=-
ber of lines in space perpendicular to a given line at a point

on that line? (See Figure 9.22,)

Keep the pencil
at right angles
to line £,

Figure 9.22

Now draw another line (¢, on the paper through point P.
(See Figure 9.22) Repeat the above experiment using line f4,
i.e., hold the pencil in different positions keeping 1t perpen-
dicular to line £;,. In these new positions, will the pencil
be perpendicular to line ¢,? Try to find a position for the
pencil so that it will be perpendicular to both 4, and f,.
(See Figure 9.22)

Al
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Figure 9.23

When you have found this position keep the pencil fixed and
have an assistant draw other lines in the paper through point
P (see Figure 9,23). What do you notice about all of these
lines?

Question 1. If m is a plane and P a point in 7, how
many lines are there through P lying in #?

Question 2. If 7 is a plane, P a point in 7, and £, a
line in 7 through P, how many lines can be
drawn in space thiough P and perpendicular
to line £,?

Question 3. If 7 is a plane, P a point in 7, ¢, and z;
two distinet lines in 7 through P, how many
lines can be drawvn in space through P and
perpendicular to both £; and £,°7

Question 4, If a line m in space is perpendicular to
each of two intersecting lines £, and 1, at
point P, how is line m situated in relation
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to all other lines through P in the same
plane as 1§, and ¢3?
If you have performed the above experimants carefully
and answered the questions correctly, you will now appreciate
the following definition and observation.

Definition 5. A line m is perpendicular to plane 7 at
P if and only if m is perpendicular to

every line in 7 containing P.

Observation 6, If a line m is perpendicular to each of

two intersecting lines in plane 7 at
point P, then m ic perpendicular to plane
T at P,
Activity 4. Materials needed: a rectangular 3x5 card, unlined
paper, sharp pencil, ruler.
Begin by drawing a line ¢ on the 3x5 card perpendicular to
one of its longer edges. Place the card so that edge rests

on the unlined paper.

— T 3x5cam

4
0\

(1ine )
(unlined perpendicular
~  paper) to longer
edge)

Figure 9.24

43



- 2o -

Tilt the card so that line £ assumes various positions in

relation to the plane of the paper (see Figure 9.24). In

which of the positions for line g would you be willing to

say that the card is perpendicular to the unlined sheet of
paper?

Keep the long edge of the card in a fixed position against

the paper and rotate the card about this edge until it lies
flat on the paper. Trace line £t onto the paper, calling this
new line ¢.] Since t was originally perpendicular to the edge
of the card, what can you say about £’?

Definition 6. Two intersecting planes Ty and T3 are called
perpendicular iff there is a line Ly in 7wy,
and a line {3 in 73, such that each of Ly
and {3 is perpendicular to the line of inter-
section of w, and m;, and 2y is perpendicular

to 43. (See Figure 9,25,)

— 7
g

7 ’

Figure 9.25
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Observation 7. If a line ¢ 1s perpendicular to a plane

m, then any plane containing ¢ is perpén-
dicular to the plane T,
Perform an experiment to test this observation, using a
pencil and several 3x5 cards.
In a plane, there is one and ¢nly one line perpendicular
to a given line at a given point on that line. Moreover,
there 1s one and only one line perpendicular to a given line

from a given point not on the given line (see Figure 9,26).

' |

Figure 9,26

Do these properties carry over to perpendicular lines in
space? Are there corresponding properties for lines perpendi-
cular to planes? The next activity explores this question,

Activity 5. Materials needed: sharp pencils, unlined paper,

ruler,

Mark a point P on the paper and draw one line through P,
Place the point of the pencil on P and hold@ the pencil so
that it is perpendicular to the line, Hold the pencil in a
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different bosition, keeping it perpendicular to the line.
Among the lines perpendicular to the given line at P, how
many are perpendicular to the plane of the paper at P?
Next hold one of your pencils perpendicular to the plane
of your paper at P. Now hold another pencil as shown in Fi-
gure 9.27 (eraser to eraser), and try to make the second pencil

perpendicular to the line or to the plane.

Figure 9,27

Your attempts should suggest that from a point not on a given
line there is one and only one perpendicular to the given line,
and from a point not on a given plans there is one and only one
line perpendicular to that plane.

Lines perpendicular to planes are usually indicated by

drawing "vertical” lines as in Figure 9,28,
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Figure 9,28

9.11 Exercises
The following exercises involve lines and planes in

space, and the relations of perpendicularity and paralleiism.

In Exercises 1--3 you are asked to perform some experiments and

from them draw a conclusion about lines and planes in space,

1. Draw several lines through a point P on a sheet of paper.
Can you hold a pencil with point on P so that the pencil
is perpencicular to only one line through P? so that it
is perpendicular to only two lines through P? so that it
is perpendicular to only three lines through P? Conclu-
sion.(sample): - If P is a point in plane 7 and m a line
through P, m is perpendicular to w at P if m is perpendi-
cular to lines in 7 through P.

2. With an assistant, hold several pencils perpendicular to
the top of a table. What pattern do you see that should

hkold in general?
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9.11 Exercises

The following exercises Involve lines and planes in space,
and the relations of perpendicularity and parallelism, In
Exerclses 1 - 3 you are asked to perform some experiments and
from them draw e conclusion about lines and planes in space,

1, Draw several lines through g point P on a sheet of paper,

Can you hold a pencil with point on P so that the pencil

is perpendicular to only one line through P? so that it

1s perpendicular to only two lines through P? so that it

is perpendicular to only three lines through P? Conclusion

(sample): If P 1s a point in plane v and m a line through

P, m 1s perpendicular to m at P 1f m 1s perpendicular to

——. lines in 7 through P,

2. With an assistent, hold several pencils perpendicular

to the top of a table, What pattern do you see that should

hold in general?

3. Anchor a plece of string to some rigid object such as a

table and hold the other end so that 1t touches the floor,
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Now vary the position where the string touches the floor
trying to find the position that makes the length of the
string shortest, What generalizatlon about distances does
this suggest?
In Exercises 4 =~ 9 determine whether the given statement
is true or false, Then describe a physical situation or make a
drawing that supports your answer, In these.statements gt
denotes line, "r" a plane, and "P" a point, The symbol "]"
denotes "is perpendicular to." (Recall: A true statement must
be true without exceptions,)
4, If g, ] 44 and £, | 4, then 4 |]2,.
5 If g, |7 and 2, | 7, then 2, ||2,.
6, If #,||s, and ¢, | v, then 2, | 7,
Te Ifw, | #and w, | 2 then m,||r,.
8, If 4, | £, end £,]]|4s, then 2, | 24.
9., If #, | 24 end 2, 1l 23, then #, and ¢, are skew.

9.12 Rectangular Coordinate Systems in Space

In Section 9;8 we coordinatized 3=space by introducing three
coordinatized lines, called axes, A procedure was then described
for designating an ordered triple of real numbers as coordinates
for a point in space, In Section 9,10 we explored the various
meanings for the word "perpendicular" as it relates to lines and
planes in space, In this section we will do some informal work
with coordinate systems in which the coordinate axes are mutuelly
QO prependicular, A system with three mutually perpendicular coordinate
1 axes 1s called a rectangg;aficoordinate system,
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As before, we identify an origin @& and unit points I on the
X~aXls, J on the y-axis, and K on the z-axis, AT = & = &K = 1,
Figure 9,29 depicts a rectangular coordinate system in 3=space,

The positive portions of the coordinate axes are represented by

v
Figure 9,29
solid lines, and the negatlve portions by broken lines,

Since the x-=exis is perpendicular to each of the other two

coordinate axes at their point of intersection n, it is perpen-

dicular to the plane determined by these axes, In other words,

the x-axls 1s perpendicular to the yz=-coordinate plane, In like
manner, the y=-axis is perpendicular to the xz-plane, and the z-

axls 1s perpendicular to the xy-plane,

As a simple example of a space coordinate system, consider
the miniature three-dimensional space that your classroom con-
stitutes, (See Figure 9,30,)

(1) Let the x-axls be the line where the floor meets the

left side wall,

(2) Let the y-axls be the line where the floor meets the

front wall,

250
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(3) Let the z-axis be the line where the left side wa.l

meets the front wall,

(4) Let the unit on all three axes be 1 foot,

z-axis ?
f~=~———==~- g
/ q
/ Front /
/ '
/ . R
/ / / y-axis
/ / /
/
l ! /’
! !
Ff=—==m==tf
Il ! " ',
! I/
---------- &
x-axis Figure 9,30

If the room is 10 feet high, 26 feet wide, and 36 feet long

(front to back), it is not hard to find the coordinates of the

following points:

(a) front, left, lower corner (4)
(b) middle of the floor (B)
(c) rear, right, lower corner (c)
(d) front, right, lower corner (D)
(e} front, right, upper corner (E)
(f) middle of the front wall (F)
(g) middle of the left side wall (G)
(h) middle of the ceiling (1)
(1) exact center of the room - (L)

rear, right, upper coymer (M)

201

(0,0,0)
(18,13, 0)
(36,26,0)
(0,26,0)
(0,26,10)
(0,13,5)
(18,0,5)
(18,13,10)
(18,13,5)
(36,26, 10)
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Several of these points, which are related ir. an interesting way
geometrically, have coordinates that are related also, For in=-

stance, points B and C lie on a line with the origin A(0,0,0),

B\(18,13,0)

(36,24,0)

Figure 9,31
and, geometrically (see Figure 9,31), B is the midpoint of seg-

ment AC, We know that in a coordinatized plane the midpoint of
a segment (whose endpoints have coordinates (x,, y,) and (x5 ¥,))
has coordinates

Xy + X, yiiya)
2 ’ 2 *

The coordinates of B satisfy this relation if we ignore the 0 in
the third position of all three coordinate triples, Is there a
generel midpoint formula in space?

Conslder points L and M and the origin, The exact center
of the room should be the midpoint of the dlagonal segment from
the front, left, lower corner tc the rear, right, upper corner,
How are the coordinates of these points related?

A(0, 0, 0) L(18, 13, 5) M(36, 26, 10)

The coordinates of the midpoint are the averages of the corre-

O sponding coordinates of the endpoints,
[C B3 1 =
292




18 = SL%}Qﬁi s 13 = SLigiﬁi s and 5 = -

If you think this convenient relation was only coincidental, check
other triples of points such as A, F, and E, or L, B, and H,

If point M is the midpoint of segment KL, where X has coor-
dinates (x,, ¥,, 2,) and L has coordinates (x,, ¥,, 2,), then
the coordinates of M are given by

Xy + X5 Yy +Y¥, 2, +2,
’ ] ’ ) ’ 3 ).

9.13 Exercises

1, Using the coordinate system described in the preceding
section, find the coordinates of the following points in the
classroom (assuming the dimensions given,)

(a) Middle of the rear wall,

(b) Middle of the right side wall,

(c) Middle of the left side wall,

(d) Rear, left, upper corner,

(e) Rear, left, lower corner,

(f) Tnhe midpoint of the segment joining the origin to the
exact center of the room,

2. Agalin using the coordinate system given for your classroomn,

describe the locations of the points in space with the

following coordinates:

(a) (5, 0, 5)

(b) (40, 0, 5)

(¢) (-5, 0, 5)

203



56

- 250 -

(a) (o, =5, 5)

(e) (o0, 0, -5)

(£) (-18, 13, 5)

() (-18, -13, 5)

Use the midpoint formula to calculate the coordinates of the
midpoints of the segments with the following endpoints:

(a) (5, 10, 15), (7, 6, 3)

() (-5, 10, 15), (-7, 6, 3)

(e) (5, -10, 15), (-7, 6, =3)

(a) (5, 10, -15), (7, -6, -3)

Glven a coordinate system for space, & translation is a map-
ping from space to space with rule of assignment of the form
T: (x, ¥, 2) —» (x+8a, y+b, z+c), where a, b, ¢ are
real numbers, To locate the image of a point under the
translation T¢ (x, ¥, z) —»(x +2, y+ 3, z = 2) we

start at the point, move 2 units parallel to the x-axls, 3
units parallel to the y=axls, and -2 units parallel to the
z=-axls, and end up at the image of the point, Find the
images under this translation of the following points:

(a) (0, 0, 0)

(b) (-5, =3, -T)

(e) (11, 7, 2)

(a) (1, -9, 12)

Find the point in space whose image under the translation in
Exercise 4 is

(a) (0, o, 0)

(b) (-5, =3, -7) 254
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(¢) (12, 7, 2)
(a) (14, -9, 12)
6. Is every translation in space a one-to=-one mapping? Why
or why not?
T. 1Is every translation a mapping of space onto space? Why or

why not?

9.14 Distance in Space

In Course II Chapter 6 you found a convenient formula for
calculating the distance between two points in a rectangular
coordinate system., In particular, if the coordinates of a point
T are (x, y) in some rectangular coordinate system for a plane,
then the distance from T to the origin is given byWJ;;—:T;;.

Since space coordinate systems are such natural extension of plane
coordinate systems, 1t is reascnable to susﬁect that in a coor-
dinate system whose axes are mutually perpendicular (a rectangular

coordinate system in space) the distance from a point S with

coordinates (x, ¥, z) to the origin is given by J/x2 + y® + z2,
Or is 1t? Why not ¥x? + y, + z, ?

To see that the first given formula is correct, conslder
the problem of finding the distance from the exact center of the
room coordinatized in Section 9,12 to the front, left, lower
corner which is the origin,

The point C with coordinates (18, 13, 5) is a vertex of
right triangle OBC, (see Figure 9.32), and the distance we are
interested in is the hypotenuse OC of this triangle, The Pytha-

209
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gorean property of right triangles is suggested as a possible
ald in calculating the required length; but only one side of
the triangle is known-- BC = 5,

ay

c (18,13,5)

B (18,13,0)

Figure 9,32

Fortunately there is a way we can calculate the length of the
other side, OB,

Since point B lies in the plane coordinatized by the X=axis
and the y-axls, and since it has coordinates (18, 13, 0), the

distance from B to the origin is \[le)’ + (13)2 , Therefore,

the length of OB is J(l8)2 + (13)2, Applying the Pythagorean
property to triangle OBC, we f£ind that the length of 00 is

\[\1(18)3 + (13)2  + (5)

or

(18)® + (13)2 + (5)%
which is precisely the answer predicted dy the formula

Jo e

<0b
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Grantving that the formula \,;2 + ¥y2 4+ 22 correctly
represents the distance from a point S with coordinates (x, y, 2z)
to the origin, can we find the distance from point S to a point
other than the origin? Suppose that point T has coordinates
(X35 ¥i5 2,). One way to determine the distance ST is as follows.,
Suppose we mgp each point of space onto a new point of space by
means of a translation, Since every translation is an isometry,
the distance ST ought to remain unchanged by the mapping, i.e.,
if S maps onto S’ and T maps into T’ then ST = S’T'’, Now if
we choose the translation defined by (x, y, z) ——» (x - x,.

V = Vs 2 = 21): we observe that under this mapping S maps into
(x = %35, ¥ = ¥y5 2 = 2,)s but T maps into (x, - x,, ¥, - ¥,,

Zy = Z,)s i.e., T maps into (0, 0, O), Hence the distance
from S to T is the same as the distance from (x - x,, ¥ - ¥,,

z = z,) to the origin, This distance is therefore given by the

formula

\/(x-xi)a + v -y o+ (2 -2,)7 .
You should recognize this formula as the natursal -generalization

of the corresponding distance formula for two dimensions

v X -x)7 + (v -¥,)%
(see Course II, Chapter 6, Section 20,)
As an example, let us find the distance from the point S
with coordinates (3, =1, 5) to the point 'T with coordinates
(2, 1, 3), (See Figure 9.33,)

207
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? z-axis

\K(;?’;lﬁ)

o > y-axis

X-axis

Figure 9.33

Applying the distance formula we obtain:

sT- (3 -2)7 4 (L -7+ (5 =30
- \[(1)2 + (2)2 + (2)2
- T

ST = 3

9.15mExercises

1.

Find the distance from the origin (0, 0, 0) of a rectangular
coordinate system to the points in space that have the following
coordinates in that system: _

(a) (3, 4, 12) (c) (=3, -4, -12)

(v) (6, 8, -24) (a) (&4, 3, 12)

In each of the following, the ‘coordinates of a point P

are given in a rectangular coordinate system, First find

<08
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the length of segment OP, then find the coordinates of the
midpoint of this segment, and finally find the length of
the segment from O to this midpoint,

(a) (6, 8, 24)

(p) (=3, =4, =12)

(c) (3, 4, 5)

(a) (6, 8, 10)

3. Do your findings in Exerclse 2 confirm or dany the validity
of the midpoint formula adopted in Section 9,12? Explain
your answer,

4, Find the distance between each of the following pairs of
points:

(a) (4, 2, 3), T(3, 0, 1)

() P(5, =2, 1), Q(1, 2, 3)
(c) ¢, §, o), n(3, 1, - %)
(a) M(2, -1, 4), N(=3, 5, 2)

5. Let points A and B have coordinates (7, =3, 6) and (3, -1, 2)
respectively, .and let M be the midpoint of segment AB,
Calculate each of the following:

(a) The coordinates of M (using the midpoint formula for
space),

(b) The distances AM, MB, and AB,

(¢) How do your findings in (a) and (b) confirm the
vallidity of the midpoint formula?

6., The vertices of MBC are A(-3, 2, 0), B(1, -2, 4), c(1, 2, =4),
Find the length of the median from vertex C to side AB,

209
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9,16 Surfaces in Space

In the previous sections of this chapter the only subsets
of space that were dlscussed were lines and plances and geometric
figures which are made up of intersecting and parallel lines and
planes, You are certainly familiar with many other kinds of
surfaces and sollds in space ~- models of spheres, cones, cylinders,
and pyramids are common sights in our three=-dimensionsal world,
In order to treat these flgureg in the deductive structure of
geometry, they must be defined as certain kinds of point sets =~
subsets of space that satisfy certain conditions,
For example, a sphere Sr’ 0 1s a surface with the property
that each point on the surface is a fixed distance r from a
point O called the center of the sphere,
Definition 7, The sphere S,,0 of radius r and center 0
1s the set of all points Q such that this
distance from 0 to Q is r,
In a rectangular coordinate system for space, this definition impliles
that if 0 is taken to be the origin @, having coordinates
(0, 0, 0), and if an arbitrary point P on the surface of Sy O
saving coordinates (x, y, z) 1s considered, the distance AP is

constant, (See Figure 9,34,)
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Using the distance formula derived in Section 9,14, we

obtain

the radius r = AP =\[(x -0)2 4+ (y -6)24+ (2 - 0)2

= ox? + y2 + 22

Consequently, St = (P(x, ¥y, 2) ¢ X2 + y2 + 22 = r2}

The interior of S ,n = {P(x, ¥, 2) ¢ X2+ y2 + 22 { r?)}

A solid sphere {or ball) is the union of a sphere and its

interior, |

solid sphere S "= (P(x, ¥, 2) ¢ X2 + y2 + 22 < r2)

Example 1., In set notation, describe t‘#ne set qf points on
the surface of a sphere with centefr at the
origin and with radius 5, _
Since r = 5, r? = 25, and t

o Sgoc0= (P(x, y, 2) & X3 4 y? + 2% = 25},

LRIC 261 |
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To most of us, the word "eylinder" brings to mind tin
cans, drinking glasses, or pipes, The cylinder is one of the
easicst surfaces to visualize, The kind of cylinder which is

most common to your experience is the right circular cylinder,

If you take a clrcle in plane 7 and a line through a point on
this circle and perpendicular to m, you generate a right circular
cylinder by moving the line parallel to itself, tracing the

circle, (See Figure 9.35.)

Figure 9.35

The geﬁérating‘lineiis called a gggg;g&x;;, and the gulding
figure in tbé plane, a circle in this éase, is called a directrix.
Instead of Jonsidering the generatrix éo be & moving line, sweeping
out the surf'ace, you could alternatively consider the cylinder

to consist ©f an infinite set of parallel lines, Each of these

[ <62




- 259 -

lines is called an element of the right circular cylinder; the
line containing the center of the circle and parallel to the
elements is called the axis of the cylinder; and the radius of
the directrix circle is called the radius of the cylinder,
Figure 9,36 illustrates a right circular cylinder in
coordinate 3-space, In this case, the z=-axis is the axis of the

cylinder, Let the radius be r,

> Y

Figure 9,36

We can think of the cylindrical surface as consisting of an
infinite stack (set) of circles, all of radius r, This suggests
that a good description of the right circular cylinder is

{P(x, ¥, 2) ¢ X2 + y2 = r2},
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Example 2, Describe the set of points on a right
clircular cylindrical surface which has the
y=-axls as the axis of the cylinder, and which

has a radius of 3 units, The general descrip-

tion of a cylinder of this type is {(P(x, y, 2z)
X2 4 z? = r3}, Therefore, our cylinder cah
be describved by {P(x, ¥y, z) : x2 + 22 = 9},
Sketch this figure,

Example 3, Describe the intersection of the cylinder of
Example 2 with the plane (P(x, y, z) : y = 5},
The intersection is simply
(P(x, ¥y, z)
{(P(x, 5, 2) ¢+ x® + 22 = 9,)

X2 4+ 22= 9 and y= 5}, or

The word 'cone' usually brings to mind ice cream cones and
Indian wigwams, The cones of our common experience are called

right circular cones, or sometimes cones of revolution, We can

think of these as being generated by a line (the generatrix)
which traces a circle C (the directrix) in a plane v, When
generating a right circular cone, the generatrix, in its sweep
or tracing of the directrix, passes through a point P in space,
not in v, (See Figure 9.37.)

Figure 9,38 shows a portion of a right circular cone in g
rectangular coordinate system, For simpliclity we chose a cone
with vertex at the origin, with axls of the cone the z=axis, and
with the property that the plane z = r intersects the cone in a

circle of radius |r|,
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Figure 9.38

J/ In this development it is convenient to consider a right
circular cone as shown in Figure 9.38 to consist of an infinite
"stack" of circles, all with planes parallel to the xy=-coordinate
plane, and with varying radil, You will note that for any one
of these circies, the radius will be equal to the distance of
the plane of that circle from the xy-plane. This suggests that
& set description for this right circular is

(P(x, 7, 2) 2 x® 4+ y2 = 22}

9.17 Exerclses

1, 1Imagine a sphere that is cut (intersected) by a plane., What
sort of geometric figure 1s the set of polnts in the inter-
section? |

2. Imagine a family of parallel planes intersecting a sphere,
Describe the relationship of the figures formed in the
intersections,

3. If P and @ are two points on a sphere, imagine the family

of planes that contain P and @, Compare the intersections

B aYay
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Sketch the figure formed when a right circular cone is

intersected by a plane which does not contain the vertex

of the cone but is:

(a) perpendicular to the axis of the cone,

(b) parallel to the axis of the cone,

(¢) neither perpendicular nor parallel to the axis of tha
cone,

Sketch the figure formed when a plane intersec*s a right

circular cylinder in case the plane is:

(a) parallel to an element ¢f the cylinder

(b) perpendicular to an element ¢f the cylinder

(c) neither parallel nor perpendicular to any element of
the cylinder

Describe the cone generated if the directrix is a line,

Describe the cylinder generated if the directrix is a line,

For each of the following surfaces, describe the figures and

make a sketch for each showlng the surfaces in coordinate

3~space,

(a) (P(x, y, 2) : x2 + y2 + 22 = 1},
(b) (P(x, y, z) : x2 + y2 + 22 = 2},
() (P(x, vy, 2) : x2 + y2 = 4},

(@) (P(x, y, 2) : y? + 22 = 1},

(e) (P(x, y, z) : x® + 22 = 9},

(£) (P(x, y, 2) : x® + 22 = y3},

(8) (P(x, y, z) : ¥2 + 22 = x2},
Given the sphere described by (P(x, y, z) : x2? + y2 + 22 = 4},

Describe in detail and within set notation, the intersections
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of the given sphere with each of the following, Draw a
sketch for each,
(a) {P(x, ¥, 2)
(b) (P(x, y, 2z} : z =1},

() (P(x, y, 2) ¢ x® + y2 = 4],
#(d) (P(x, ¥y, 2z) :+ -1 {y {1},

e

x=la.ndy=l].

9,18 Summary

The purpose of this chapter was to extend the study of

geometry to three-dimensional space, Thils involved:

(a) The study of planes as subsets of space, and of
the relations that exist among planes and lines in
spate,

(b) The use of deductive logic in obtaining further
information about figures in space,

(¢) Coordinatization of space,

(d) The study of planes and other common surfaces in
space,

(e) Studying the processes for obtaining description of

surfaces using set notation,

9.19 Review Exercises

l, Which of the following surfaces suggest a plane?
() The surface of a doughnut,
(v) The roof of Grant:s Tomb

{AY Mho crvnfans AF +ha AkTanmdla Naaan
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2, How many planes are there that contain
(a) a given point,
(b) two given points,
(¢) two intersecting lines,
3. Determine which of the following stavements are true and
which are false,
(a) If 7 ||ry and w,|lr,, then wyjlm,.
(b) It w, | 7y and vy | 753, then w ||rs.
(¢) If 4| mand n | m, then £]|n,
(a) 1If g||r and m||m, then ¢||m,
(e) 1Ifw,||lr, and m, N7, = 4 then 7, intersects 7,.
&, Find the coordinates of the midpoint of AB in case
(a) a= (1, 2, 3), B= (3, 2, 1)
(b) A= (17, 4, =3), B= (=45, =32, =12)
5., Find the distance from (0, 0, 0) to
(a) (3, 4, 5)
() (-5, -12, -13)
6. Find the distance between each of the following pairs of
points in space:
(a) (5, 3, 2), (2, 3, -2)
(b) (6, =1, =5), (-6, 4, -5)
(¢) {4, 3, 0), (-2, 0, 6)
Te Sketch the following planes in coordinate 3-space,
(a) (P(x, y, 2) : 2z =1},
(b) (P(x, y, 2z) ¢+ x= =2},
o (¢) (P(x, y, 2) ¢ ¥y= 3],
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8. (a) Sketch the sphere described by {P(x, y, z) :
x? 4+ y2 + 22 = 9},

(b) If the points on the sphere were translated according
to the rule (x, ¥y, z) —» (x -1, y -2, z - 3),
would the resulting surface be a sphere? Why?

(¢) Sketch the sphere resulting from translating the
sphere in (a) according to the translation rule in
(v).

(d) From what you have observed in the first three parts
of thls exercise, describe the set

{(P(x, ¥y, 2) ¢ (x =2)2 + (y ~1)2 + (z - 3)2 = 4},
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